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Supporting Information Text

Experiment

Preparation of nanoantennas. IR-resonant gold nanoantennas are fabricated as described previously (1) on a CaF2 substrate
coated by 100 nm thick Au layer followed by 90 nm MgF2. The resulting ground plane coupling minimizes dissipation,
resulting in long lived antennas with narrow linewidths of ∼80 cm−1 FWHM corresponding to ∼120 fs lifetimes and Q-factors
of ∼29. Far-field reflection FTIR-microscope characterization is shown in Fig. S1 including the resulting parameters from
Gaussian curve fitting for the center frequency νant and the full width at half maximum linewidth (FWHM). Note that the
linewidth is larger than in near-field spectroscopy because of the ensemble average over the length distribution measured in
the FTIR-microscope. The spatial and spectral field characteristics of the bare and tip-coupled antennas are modeled by
Finite-Difference Time-Domain (FDTD) simulation (see Fig. 2a in the main text).

Fig. S1. Far-Field reflection measurements of selected nanoantennas with full width at half maximum (FWHM) linewidth and center frequency νant determined by Gaussian
curve fitting. The antenna length l is the nominal length targeted in fabrication.

The antennas are arranged on the chip as shown in Fig. S2. Antenna arrays are made for near-field and far-field measurements.
The far-field arrays contain antennas of nominally identical length and are designed to allow for far-field ensemble measurements
in a reflection FTIR-microscope (see S1). In the near-field arrays, the length of the antennas increases from one row to the next
ranging from 1360 nm to 1550 nm, covering the frequency range from 1850 to 2100 cm−1. This allows us to probe different
antennas with only a small movement of the AFM translation stage. The distance between the antennas is chosen so that no
near-field interaction occurs between antennas (∼20 µm) to ensure an isolated optical antenna response. The chip contains
three types of antennas: "bright mode" antennas directly resonant at the intended frequencies, "dark mode" antennas resonant
at the first overtone, and dimer antennas with a nanometer size gap between two antennas. Only the bright mode antennas are
utilized in this work.

Fig. S2. Nanoantenna chip design

.

Monolayer synthesis. The Re-carbonyl complex monolayer on gold is prepared according to Ref. (2, 3). First, the gold surface
is functionalized with 11-bromoundecan-1-thiol, followed by a bromide to azide (N−

3 ) substitution. The rhenium complex is
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functionalized at the bipyridyl ligand with a terminal alkyne. The complex is linked to the monolayer by a click reaction with
the azide copper-catalyzed azide-alkyne cycloaddition (CuAAD). The sythesis is reproduced in Fig. S3. Between the steps,
samples are washed with 10 mL of each dimethlyformamide and ethanol.

Fig. S3. Synthesis of the monolayer coating on the gold nanoantennas following Ref. (3).

Data fitting and error analysis. Here we give further explanations on the data fitting process and on the error estimates. The
approach is to fit the interferograms in the time domain to retrieve the decay times TFID,j, frequencies νj, amplitudes Aj, and
relative phases ϕj for the antenna (ant) and the two vibrational modes (A’(1), A’(E)). In contrast to previous work(4) the
antenna lifetime is not modeled as instantaneous. The first step is to fix the parameters for the driving laser field by fitting a
reference measurement on gold. Note that the maximum of the interferograms is delayed because of the finite antenna response
(see Fig. 2b). We define the reference field as follows

Eref/in(t) = AL exp(−2ln2 (t − t0)2

FWHM2 ) exp(iω0t), [1]

with the scaling amplitude AL, the FWHM pulse duration (typical pulse durations are 170 fs) and ω0 the center frequency
of the pulse.

Having the laser parameters constrained, the measurements of the antenna are fitted, which have been measured under
the same conditions. Typically, we kept the vibrational frequencies (ν̄A′(1) = 2028 cm−1 and ν̄A′(E) = 1919 cm−1) fixed as
determined independently and the antenna lifetime TFID,ant within a reasonable range.

Table S1. Fit parameters and values for four antennas of different lengths averaged over five consecutive scans at the same position on the antenna.
Nominal antenna length and the antenna frequency ν̄ant, the antenna lifetime TFID,ant, the vibrational lifetime TFID,A′(1), the amplitude ratio between
the vibrational and the antenna signal AA′(1)/Aant, the phase difference between vibration and antenna ϕA′(1) − ϕant, the vibrational lifetime
TFID,A′(E), the amplitude ratio between the vibrational and the antenna signal AA′(E)/Aant and the phase difference between vibration and antenna
ϕA′(E) − ϕant. The vibrational frequency is fixed to ν̄A′(1) = 2028 cm−1. The parameters for the laser field are identical for this dataset with a laser
frequency of ν̄Laser = 2013 cm−1 and a FWHM pulse duration of t = 167 fs, which we assume to possess no significant chirp. Individual values are the
average of fit parameters from 5 consecutive scans.

Length ν̄ant TFID,ant AA′(1)/Aant TFID,A′(1) ϕA′(1) − ϕant AA′(E)/Aant TFID,A′(E) ϕA′(E) − ϕant

(nm) (cm−1) (fs) (arb. units) (fs) (rad) (arb. units) (fs) (rad)

1400 2022 ± 1 129 ± 2 0.22 ± 0.01 379 ± 6 2.5 ± 0.1 - - -
1440 1978 ± 1 152 ± 3 0.046 ± 0.01 683 ± 16 0.74 ± 0.05 0.24 ± 0.02 250 (fixed) 2.9 ± 0.1
1460 1970 ± 1 179 ± 1 0.043 ± 0.002 561 ± 16 0.54 ± 0.01 0.35 ± 0.02 250 (fixed) 3.1 ± 0.1
1520 1937 ± 1 120 (fixed) 0.019 ± 0.001 516 ± 33 0.68 ± 0.1 0.76 ± 0.04 250 (fix) 2.5 ± 0.1
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In Tab. S1, resulting parameters for antennas of different length are shown. Five consecutive scans at the same position on
the antenna are made and averaged after fitting. The fit values are highly reproducible with a small variance. For consistency,
we compare values as measured on the terminal of the antenna facing the incoming light pulse. We find a higher variance
between different antennas within the same fabrication badges. In Tab. S2 we compare fit results on four antennas of nominally
identical length that give us an estimate of the variance for the fit parameters.

Table S2. Fit parameters and values for four individual measurements on the same nominal antenna length to determine the variance between different
antennas (averaged over five consecutive scans per antenna). Nominal antenna length, the antenna frequency νant, the antenna decay time TFID,ant,
the vibrational decay time TFID,A′(1), the amplitude ratio between the vibrational and the antenna signal AA′(1)/Aant and the phase difference between
vibration and antenna ϕA′(1) − ϕant.

Length ν̄ant TFID,ant AA′(1)/Aant TFID,A′(1) ϕA′(1) − ϕant

(nm) (cm−1) (fs) (arb. units) (fs) (rad)

1400 2022 129 0.22 379 2.5
1400 2025 140 0.47 254 2.4
1400 2023 135 0.28 332 3.6
1400 2020 133 0.36 247 2.0

average 134 ± 5 0.34 ± 0.11 379 ± 63 2.64 ± 0.68

Monolayer on gold surface. In order to determine the intrinsic vibrational lifetime of a monolayer of the Re-carbonyl complex,
a sample on a pure gold surface is prepared. Nano-FTIR measurements are performed as described in the main text that
result in the interferometric timetraces as shown in Fig. S4. The vibrational signal is weaker compared to the IR-nanoantenna
enhanced case, as expected. Using the same fitting procedure as described above, a decay time of TFID,A′(1) = 750 ± 150 fs is
determined. For an excitation frequency of 1911 cm−1, a decay time of TFID,A′(E) = 315 ± 75 is determined (see Fig. S5).

Fig. S4. Nano-FTIR measurement of the Re-carbonyl complex on a gold surface to determine the intrinsic FID lifetime of the A’(1) mode. Excitation at 2013 cm−1.

Fig. S5. Nano-FTIR measurement of the Re-carbonyl complex on a gold surface to determine the intrinsic FID lifetime of the A’(E) mode. Excitation at 1911 cm−1.

FID fitting and FT spectra. Data with fits to combined antenna, laser and vibrational components, as well as the respective
Fourier transform spectra can be found in Fig. S6 and Fig. S7 for the 1440 nm antenna. This dataset corresponds to Fig. 3b
in the main text. The same representation can be found in Fig. S8 and Fig. S9 for the 1520 nm antenna (Fig. 3c in the main
text).
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Fig. S6. Interferogram measured at the right antenna terminal of a 1440 nm long antenna (top, black) with model fit (top, magenta), and decomposed (bottom) into the driving
laser field (grey), the antenna response (blue), and vibrational response of A′(1)(red) and A′(E)(violet) modes.

Fig. S7. Fourier-transform of time-domain signals for the 1440 nm long antenna from Fig. S6. Spectra shown for the data (black) with model fit (magenta), and the individual
spectra for the driving laser field (grey), the antenna response (blue), and vibrational response of A′(1) (red) and A′(E) (violet) modes from the fit.
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Fig. S8. Interferogram measured at the right antenna terminal of a 1520 nm long antenna (top, black) with model fit (top, magenta), and decomposed (bottom) into the driving
laser field (grey), the antenna response (blue), and vibrational response of A′(1) (red) and A′(E) (violet) modes.

Fig. S9. Fourier-transform of time-domain signals for the 1520 nm long antenna from Fig. S8. Spectra shown for the data (black) with model fit (magenta), and the individual
spectra for the driving laser field (grey), the antenna response (blue), and vibrational response of A′(1) (red) and A′(E) (violet) modes from the fit.

Lifetime comparison with literature. In the following Table S3, we compare literature values for the homogeneous and
inhomogeneous linewidth of the A’(1) vibrational mode and the respective decay times for the population T1, pure dephasing
T ∗

2 and dephasing due to inhomogeneous broadening with values from our work. The enhancement due to antenna coupling
accelerates the T1 time (see main text for details).

Theory

Lindblad quantum master equation. We model the monolayer as an ensemble of N molecular vibrations that couple to the
antenna field with collective couplings strength gK =

√
Ngk, where gk is the coupling of mode k of an individual molecular

vibration. We consider two vibrational modes coupled to the antenna field, which are the modes A’(1) (symmetric) and the
effective mode A’(E)=A’(2)+A” (asymmetric), as shown in Fig. 1 of the main text. In the collective mode approximation
(5), the ensemble of molecular vibrations is represented by the collective operators B̂S and B̂A, for the symmetric mode at
ωS = 2028.0 cm−1 and the effective asymmetric mode at ωA = 1919.0 cm−1, respectively. The effective light-matter Hamiltonian
is given by

Ĥ = ωantâ
†â + ωSB̂†

SB̂S + ωAB̂†
AB̂A + [gS(âB̂†

S + â†B̂S) + gA(â†B̂A + âB̂†
A)] + ζSA(B̂SB̂†

A + B̂†
SB̂A), [2]

where â is the single mode field operator for an antenna resonance frequency ωant, ζSA is the bilinear coupling strength between
two vibrational modes, gS and gA are the collective light-matter couplings of the symmetric and asymmetric modes with the
antenna field, respectively.
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Table S3. Comparison of literature values for the Re-carbonyl monolayer A’(1) mode with values measured in this work with and without antenna coupled
enhancement. For the population lifetime T1, the homogeneous linewidth Γhom, the pure dephasing time T ∗

2 , the inhomogeneous linewidth Γinhom, the
dephasing time by inhomogeneous broadening Tinhom, the total linewidth Γtotal and the corresponding FID time TFID. Green indicates that the value
was calculated from the values given in the respective reference. Blue indicates that the value is the average of the respective literature values. Red
indicates changes due to antenna coupling. *Calculated from decay time / Measured linewidth. TD: Measured directly in the time domain. FD: Calculated
from spectral linewidth.

Source T1 Γhom T2∗ Γinhom Tinhom Γtotal TFID
(ps) (cm−1) (ps) (cm−1) (fs) (cm−1) (fs)

Rosenfeld et al. (2) 10 1.8 8.5 14.3 742 15.2 699 (FD)
Yan et al. (3) 11 3.2 4 17.9 536 21 506 (FD)

This work (uncoupled) 10.5 2.5 6.3 16.1 640 14/16* 750 (TD) / 665 (FD)
This work (coupled) 0.3 30 6.3 16.1 640 30 330 (TD)

We derive the equations of motion by solving the Lindblad quantum master equation (6)

d
dt

ρ̂S = −i[Ĥ′ + ĤF(t), ρ̂S] + Lκant [ρ̂S] + LγS [ρ̂S] + LγA [ρ̂S] , [3]

where ρ̂S is the reduced density matrix of the coupled system and [Â, B̂] denotes a commutator. The driving over the antenna
is given by

ĤF(t) = Fd(t)
[
âeiωLt + â†e−iωLt

]
, [4]

where Fd(t) = F0φ(t) is proportional to the square root of the photon flux of the laser pulse at frequency ωL, and φ(t) is the
carrier envelope of the laser pulse. The Lindblad superoperators that describe dissipation and decoherence are given by

Lκant [ρ̂S] = κant

2
(
2âρ̂Sâ† − â†âρ̂S − ρ̂Sâ†â

)
[5]

LγS [ρ̂S] = γS

2
(
2B̂Sρ̂SB̂†

S − B̂†
SB̂Sρ̂S − ρ̂SB̂†

SB̂S
)

[6]

LγA [ρ̂S] = γA

2
(
2B̂Aρ̂SB̂†

A − B̂†
AB̂Aρ̂S − ρ̂SB̂†

AB̂A
)

, [7]

where κant is the photon decay rate of the antenna mode and γS, γA are the vibrational relaxation rates of the symmetric and
effective asymmetric modes, respectively.

From Eq. (3), the equations of motion for the mean field coherences are given by

⟨ ˙̂
BS⟩ = −(γS/2 + iωS)⟨B̂S⟩ − igS⟨â⟩ − igL⟨B̂A⟩ [8]
⟨ ˙̂a⟩ = −(κant/2 + iωant)⟨â⟩ − igS⟨B̂S⟩ − igA⟨B̂A⟩ − iFd(t)e−iωLt [9]

⟨ ˙̂
BA⟩ = −(γA/2 + iωA)⟨B̂A⟩ − igA⟨â⟩ − igL⟨B̂S⟩, [10]

where ⟨B̂S⟩ is the symmetric A′(1) mode coherence, ⟨â⟩ is the antenna field coherence, and ⟨B̂A⟩ is the asymmetric A′(E)
effective coherence.

We use the bare vibrational and antenna bandwidths (FWHM) to set the values of the bare material and photonic decay
rates. In the Lorentzian response theory used here the decay times are calculated by T 0

2,vib(fs) = 10610.4÷γvib(cm−1). Similarly
T 0

2,ant(fs) = 10610.4 ÷ κant(cm−1). The model parameters gS, gS, ζSA are then calibrated to match the measured values of
TFID,A′(1).

The dynamics of ⟨â(t)⟩ is determined by the interplay between the direct coherence exchange between vibrational modes
through ζSA and their common coupling to the antenna through gS and gA. As a result of these coupling dynamics, the
evolution equations confirm the pronounced drop in TFID,A′(1) when the antenna is tuned to resonance with the A′(1) mode,
which corresponds to a Purcell increase of the A′(1) relaxation rate by 4g2

S/κantγS (4, 5). A numerical solution also captures
the second, weaker reduction of the A′(1) decay time when the antenna is resonant with the effective A′(E) mode. This
weak but clearly discerned second dip is a direct consequence of the Purcell-enhanced relaxation of A′(E) by 4g2

A/κantγA,
as the antenna field is resonant with its lower-frequency vibrational mode. If the vibrational modes were fully uncoupled
(ζSA = 0), there would be no pathway for the Purcell-accelerated relaxation of the A′(E) mode to influence the long-time
dynamics of the laser-driven A′(1) mode coherence. The intrinsic intramolecular vibrational interaction thus opens an additional
antenna-dependent relaxation channel for the A′(1) mode, which ultimately gives rises to a second TFID dip at the A′(E)
resonance. This effective dynamical cross-coupling between the A′(1) and A′(E) vibrational modes must compete with the bare
vibrational relaxation pathways parametrized by the rates γS and γA, respectively. Therefore, although in principle we would
also expect a second dip in TFID when the laser drives the A′(E) mode and the antenna is resonant with the A′(1) frequency,
the shorter intrinsic lifetime of the A′(E) mode does not allow for the cross-coupling to be observed. Therefore, the second
drop in TFID at the A′(1) frequency is not resolved in Fig. 4b of the main text. In the model the second dip at A’(1) is only
visible if unreasonably high intramolecular ζSA or vibration-antenna coupling gS constants are assumed.
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Analytical derivation of 1/TFID. In order to describe the vibrational and antenna frequency dependence of TFID, we derive an
analytical expression for TFID as follows. We write the equations of motion for the antenna and vibrational coherences [Eqs.
(8) to (10)] for the Hamiltonian in Eq. (2) in matrix form as

Ẏ(t) = −M Y(t) + F(t), [11]

where the mean-field vector Y = [⟨B̂S⟩, ⟨â⟩, ⟨B̂A⟩]T describes the coupled evolution of vibrational and antenna coherences and
M is the dynamical matrix given by

M =

(
γS/2 + iωS igS iζSA

igS κant/2 + iωant igA
iζSA igA γA/2 + iωA

)
. [12]

We derive an analytical expression that describes the contributions of each type of coupling. We look for small deviations
of the roots of dynamical matrix M in the form λ = γS/2 + iωS + δ, where δ is a complex number that encodes the changes
in frequency and decay rate of the symmetric oscillator due to cavity coupling. First, we consider the free-cavity scenario
(gS = gA = 0), i.e., Purcell effect due to intramolecular coupling between symmetric A’(1) and effective asymmetric A’(E)
modes. Thus, we find that the symmetric vibrational decay rate reads

1
T 0

FID
= γS

2 + 2ζ2
SA∆γ

(∆γ)2 + 4∆2
SA

, [13]

where ∆γ ≡ γA − γS and ∆SA = ωA − ωS.
Similarly, in the simplest light-matter interaction scenario, i.e., no intramolecular coupling (ζSA = 0), the cavity only couples

to one of the vibrational modes (gA = 0). Considering the bad cavity limit κant ≫ γS (bare Purcell enhancement), the second
contribution to the vibrational decay rate is given by

Re[δ] = 1
2T1,P

= 2g2
S∆Γ

(∆Γ)2 + 4∆2
aS

, [14]

where ∆Γ ≡ κant − γS is the antenna-vibration decay mismatch and ∆aS = ωant − ωS is the detuning from the symmetric mode
(5).

Third, when the cavity also couples to the asymmetric mode, a reduction of the decay time TFID is expected due to the
Purcell effect. Therefore, even if the symmetric mode is uncoupled from the cavity (gS = 0), we expect to have an effective cavity
frequency dependent lifetime via the Purcell-enhanced decay rate γA. Hence, we can simply insert the Purcell enhancement of
the asymmetric decay rate [Eq.(14) for asymmetric mode (S → A)] into the intramolecular expression [Eq. (13)], which gives
as a result

Re[δ] = 1
2T1,IVR−P

= 4ζ2
SA[∆γ + 4g2

A(κant − γA)/((κant − γA)2 + ∆2
aA)]

[∆γ + 4g2
A(κant − γA)/((κant − γA)2 + ∆2

aA)]2 + 4∆2
aS

. [15]

In the bad cavity limit κant ≫ γA, therefore κant − γA ≈ κant and the factor 4g2
Aκant/(4∆2

aA + κ2
ant) is smaller than ∆Γ. Thus,

we can expand Eq. (15) up to first order to obtain [Eq. (3) in main text]

1
2T1,IVR−P

≈ γS

2 + 4ζ2
SAg2

Aκant

[(∆γ)2 + 4∆2
SA][κ2

ant + 4∆2
aA] , [16]

with ∆aA = ωant −ωA. The last contribution is due to cavity-mediated interaction between vibrational modes, i.e, ζSA/κant → 0.
Under this approach, we expect cavity-mediated surrogate coupling between the symmetric and effective asymmetric modes, as
the dynamical matrix becomes equivalent to the electromagnetic induced transparency (EIT) Hamiltonian from AMO physics
(7). Hence, we obtain [Eq. (4) in main text]

Re[δ] = 1
2T1,anti−P

= −η Re
{

g2
S[∆γ/2 + i∆SA]

g2
A + g2

S − [∆γ/2 + i∆SA][∆Γ/2 − i∆aS ]

}
, [17]

where 0 < η < 1 is an arbitrary weighting factor. Equation (17) can be seen as an anti-Purcell contribution to the decay time
TFID,A′(1) of the symmetric mode.

Finally, the total vibrational decay time for the symmetric mode can be written as

1/TFID,A′(1) ≈ 1/T 0
FID + 1/2T1,P + 1/2T1,IVR−P + 1/2T1,anti−P, [18]

which corresponds to Eq. (2) in main text.
In a similar form, an expression for the asymmetric mode can be also derived and given by

1
TFID,A

= γA

2 − 2ζ2
SA∆γ

(∆γ)2 + 4∆2
SA

+ 2g2
A∆ΓA

(∆ΓA)2 + 4∆2
aA

+ 4ζ2
SAg2

Sκant

[(∆γ)2 + 4∆2
SA][κ2

ant + 4∆2
aS]

+η Re
{

g2
A[∆γ/2 + i∆SA]

g2
A + g2

S − [∆γ/2 + i∆SA][∆Γ/2 + i∆aA]

}
[19]

with ∆ΓA = κant − γA. Equations (18) and (19) are plotted in Fig. 4a and 4b in the main text, respectively.
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