
J. Chem. Phys. 156, 124110 (2022); https://doi.org/10.1063/5.0075894 156, 124110

© 2022 Author(s).

Semi-empirical quantum optics for mid-
infrared molecular nanophotonics
Cite as: J. Chem. Phys. 156, 124110 (2022); https://doi.org/10.1063/5.0075894
Submitted: 19 October 2021 • Accepted: 04 March 2022 • Accepted Manuscript Online: 04 March 2022
• Published Online: 25 March 2022

 Johan F. Triana, Mauricio Arias,  Jun Nishida, et al.

ARTICLES YOU MAY BE INTERESTED IN

Selection of representative structures from large biomolecular ensembles
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0082444

Simulation of absorption spectra of molecular aggregates: A hierarchy of stochastic pure
state approach
The Journal of Chemical Physics 156, 124109 (2022); https://doi.org/10.1063/5.0078435

Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and
quantum technology
The Journal of Chemical Physics 155, 050901 (2021); https://doi.org/10.1063/5.0054896

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520620674&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9ef36e982c8c81bdfc9703d75224adb1dd2af5d5&location=
https://doi.org/10.1063/5.0075894
https://doi.org/10.1063/5.0075894
https://orcid.org/0000-0001-9551-3121
https://aip.scitation.org/author/Triana%2C+Johan+F
https://aip.scitation.org/author/Arias%2C+Mauricio
https://orcid.org/0000-0001-7834-8179
https://aip.scitation.org/author/Nishida%2C+Jun
https://doi.org/10.1063/5.0075894
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0075894
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0075894&domain=aip.scitation.org&date_stamp=2022-03-25
https://aip.scitation.org/doi/10.1063/5.0082444
https://doi.org/10.1063/5.0082444
https://aip.scitation.org/doi/10.1063/5.0078435
https://aip.scitation.org/doi/10.1063/5.0078435
https://doi.org/10.1063/5.0078435
https://aip.scitation.org/doi/10.1063/5.0054896
https://aip.scitation.org/doi/10.1063/5.0054896
https://doi.org/10.1063/5.0054896


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Semi-empirical quantum optics for mid-infrared
molecular nanophotonics

Cite as: J. Chem. Phys. 156, 124110 (2022); doi: 10.1063/5.0075894
Submitted: 19 October 2021 • Accepted: 4 March 2022 •
Published Online: 25 March 2022

Johan F. Triana,1,a) Mauricio Arias,2 Jun Nishida,3 Eric A. Muller,4,b) Roland Wilcken,3
Samuel C. Johnson,3 Aldo Delgado,2 ,5 Markus B. Raschke,3,c) and Felipe Herrera1 ,5,d)

AFFILIATIONS
1 Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara, 3493 Santiago, Chile
2 Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
3Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, USA
4Department of Chemistry, Colgate University, Hamilton, New York 13346, USA
5ANID-Millennium Institute for Research in Optics, Concepción, Chile

Note: This paper is part of the JCP Special Topic on Advances in Modeling Plasmonic Systems.
a)johan.triana@usach.cl
b)emuller@colgate.edu
c)markus.raschke@colorado.edu
d)Author to whom correspondence should be addressed: felipe.herrera.u@usach.cl

ABSTRACT
Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for imple-
menting cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light–matter
coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond
temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally
applicable semi-empirical methodology based on quantum optics to describe light–matter interaction in systems driven by mid-IR fem-
tosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared
nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nan-
otips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong
coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonic-
ity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of
the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quan-
tum theory is equivalent to first-principles techniques based on Maxwell’s equations, but its lower computational cost suggests its use as a
rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control
of materials to quantum information processing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075894

I. INTRODUCTION

A wide range of natural and engineered material plat-
forms have been used to study cavity quantum electrodynamics
(QED1) for applications in quantum sensing,2 quantum commu-
nication,3 and quantum information processing.4 Under strong
light–matter coupling, quantized excitations of the electromagnetic
field in a cavity can reversibly exchange energy and coherence
with material excitations. This coherent interaction competes with

radiative and non-radiative dissipative processes that naturally occur
on the degrees of freedom of atoms,5–9 molecules,10,11 solid-state
defects,12 or superconducting qubits.3 For weaker coupling, the
cavity field can accelerate the decay of material excitations and
internal state coherences,13 an effect exploited in different cavity
QED platforms for cooling,14 reservoir engineering,15 and enhanced
imaging.16

While cavity QED has been studied with different quantum
systems over a wide region of the electromagnetic spectrum—GHz
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to UV, the strong coupling regime with infrared-active molecular
vibrations in Fabry–Perot (FP) cavities has only recently attracted
significant attention.17–24 Given the weak transition dipole moments
of infrared molecular transitions and their low energies and long
resonant wavelengths (∼3 − 15 μm), strong coupling is achieved
collectively with a macroscopic number of molecular dipoles in
diffraction-limited FP resonators. In this collective coupling sce-
nario, selected chemical reactions have been shown to proceed
at different rates inside infrared resonators in comparison to free
space,25–28 which suggests the possibility of using the electromag-
netic vacuum field as a resource for chemical catalysis.29–31 In
addition to controlled chemistry,32 strong coupling in infrared cav-
ities could enable the development of novel mid-IR photon sources,
infrared molecular qubits, and nonlinear optical elements that
exploit the anharmonic potential of molecular vibrations.

Reducing the density of molecules and the mode volume of the
mid-IR field can enable new experimental insights into the nature
of the strong coupling regime with vibrational dipoles.38 Nanoscale
infrared resonator architectures have been developed for studies
of cavity QED with ensembles of molecular vibrations33–36,39–43 or
intersubband transitions.37,44 The densities of IR-active dipoles are
significantly smaller in nanophotonic resonators in comparison with
FP cavities. However, a strong coupling regime with an individual
infrared dipole has yet to be demonstrated.

A range of theoretical approaches have been used previously
to describe strong coupling in nanophotonics, varying in complex-
ity from phenomenological coupled-oscillator fits to first-principles
calculations using macroscopic QED.45,46 The latter approach is
by construction consistent with Maxwell’s equations and accu-
rately describes the intrinsically non-Markovian character of the
coupled light–matter dynamics of quantum emitters in optical
nanostructures.47,48 However, the formalism is computationally
expensive to implement due to the multiple evaluations of the elec-
tromagnetic Green’s tensor needed to map the quantum dynamics
of the coupled system over a range of frequencies, positions, and
polarizations,47,49–53 which challenges its application to the rapid
design and characterization of prototype nanophotonic quantum
devices. On the other hand, simple classical oscillator models,54,55

while equivalent to quantum theory under some circumstances,32,56

fail to describe non-classical fields57 and the strong coupling beyond
the linear response.58 Simple quantum mechanical models thus
become a necessity for the development of infrared cavity QED on
the nanoscale.

In this work, we propose a semi-empirical open quantum sys-
tem approach to study cavity QED in infrared resonators driven by
femtosecond pulses. The quantum state of the coupled light–matter
system evolves according to a Markovian quantum master equation
in the Lindblad form, whose coherent and dissipative parameters
are obtained from independent experiments. Our quantum optics
approach is shown to have predictive power that is equivalent to
classical oscillator models under the appropriate conditions but can
potentially offer new insights on genuine quantum phenomena in
situations that are beyond the capabilities of classical models. In
terms of computational complexity, our methodology is thus a com-
promise between a fully ab initio macroscopic QED approach and
phenomenological classical coupled-oscillator models. The com-
plexity of our methods can be systematically expanded to include
the effect of multiple laser pulses, the dynamics of the probe

nanotips used for imaging and field manipulation, and the natural
anharmonicity in the internal level spectrum of materials.

We validate our methodology by quantitatively repro-
ducing previous tip nanoprobe IR-vibrational spectroscopy
experiments.33,34 The theory is shown to match time-domain and
frequency-domain observables of the coupled dipole–resonator
systems under weak and strong coupling and provides straight-
forward insights into the dynamical role of probe nanotips on
the manipulation of strong coupling and Fano interference effects
(Sec. III). We then use the quantum formalism beyond linear
response to predict novel phenomena enabled by IR-molecule
picocavities, where classical models fail. This includes the prediction
of a new type of anharmonic blockade effect, formulated in the
collective single-mode approach, that results in a phase rotation of
the coupled resonator field that scales nonlinearly with the input
pulse power (Sec. IV). For molecular vibrations, we predict phase
shifts of a few radians for a single femtosecond pulse that can
produce population up to the second excited vibrational level. In
contrast with other anharmonic blockade mechanisms in cavity
QED, the proposed infrared nonlinearity does not rely on strong
light–matter coupling,59 optomechanical effects,60 or long-range
interactions between dipoles.61

II. CROSSOVER FROM WEAK TO STRONG COUPLING
Before describing the proposed quantum approach for infrared

nanophotonics, let us first review basic cavity QED phenomenology
relevant for this work. Figure 1(a) illustrates a molecular vibration
dipole with fundamental frequency ωv that couples to the near-field
mode of an infrared resonator with frequency ωa. The single-particle
light–matter coupling strength is denoted by g. Vibrational dipoles
in polyatomic molecules dissipate their energy into the coupled
many-body vibrational manifold with an overall rate γ. The near-
field undergoes non-radiative cavity loss through, e.g., Drude damp-
ing into the metal nanostructure at a rate κnr and radiative loss into
the far-field at rate κr. The total photon loss rate is thus κ = κnr + κr.
Spectroscopic observables of the coupled system depend on these
parameters.

In general, a coupled light–matter system evolves with eigen-
frequencies and decay rates that differ from the uncoupled case.
This is shown in Fig. 1(b), where we plot the material (T2γ) and
photonic (T2κ) dephasing times of coupled light–matter systems
with different κ/γ ratios as a function of the cooperativity para-
meter Ng2

/κγ, where N is the number of molecular dipoles in
the system. In a simple description that ignores inhomogeneous
broadening,56,62 a strongly coupled dipole–resonator system decays
at a rate that is the average of the material and photonic rates. Such
hybridization of timescales formally occurs for resonant coupling
when 4

√
Ng/∣κ − γ∣ ≥ 1,54,55 where ∣κ − γ∣ ≠ 0 is the decay mismatch.

However, as Fig. 1(b) illustrates, timescale hybridization can, in
principle, occur under conditions that would not be spectroscop-
ically considered strong coupling. In this regime, we also expect
the formation of polaritonic states that form a spectrally resolved
doublet separated by the Rabi splitting Ω ≡ 2

√
Ng under resonant

conditions. Polariton formation occurs when Ω is greater than the
individual linewidths κ and γ. Demanding thatΩ ≥ {2κ, 2γ} imposes
the strong coupling condition
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FIG. 1. Infrared nanocavity quantum electrodynamics. (a) A nanocavity confined infrared photon field resonant at frequency ωa with radiative decay rate κr and non-
radiative decay κnr coupled with a molecular vibration with absorption frequency ωv and vibrational relaxation rate γ. The total photon decay rate is κ = κr + κnr. The
cavity photon exchanges energy with the material quantum states at rate g. (b) Photonic (T2κ) and material (T2γ) dephasing times as a function of the cooperativity
parameter Ng2/κγ. For small cooperativities (weak coupling), the photonic and material dephasing times are different when κ ≠ γ. For cooperativities that exceed unity
(strong coupling), a single hybrid dephasing time T2hyb is established. Selected infrared cavity implementations using tip-enhanced IR antenna resonators33,34 (green circles),
planar nanocavities35,36(blue triangles), intersubband quantum well heterostructures37 (purple diamond), and liquid-phase Fabry–Perot microcavities18,19 (red squares) are
given.

Ng2
/κγ ≥ 1. (1)

In the weak coupling regime, Fig. 1(b) shows that the mate-
rial dephasing time T2γ decreases with respect to its free space value
T0

2γ ≡ 2/γ as the cooperativity approaches the strong coupling region
from the left. For resonant conditions, the dephasing time scales with
the cooperativity as

T2γ =
T0

2γ

1 + 4Ng2/κγ
, (2)

which is a signature of the Purcell effect.62 The reduction in T2γ is
accompanied by an increase in the photon lifetime T2κ with respect
to its free space value T0

2κ ≡ 2/κ although for systems with κ/γ≫ 1,
as expected for most open cavity systems, this change in the pho-
ton lifetime is only modest. The hybrid dephasing time T2hyb/2
≡ (1/T0

2κ + 1/T0
2γ)
−1 is established for Ng2

/κγ≫ 1. Although
Fig. 1(b) describes a wide range of experimentally relevant scenar-
ios, we note that natural sources of inhomogeneity in the material
and photonic system can result in significant deviations from the
behavior described above.32 In the following sections, we further
describe the light–matter coupling theory with molecular vibrations
at the mid-infrared spectral range. The hybrid system under study is
formed by gold nanoantennas coated with a thin polymer with car-
bonyl stretching modes that couple to the near-field of an antenna
driven on resonance by a single femtosecond pulse. Such systems
have been implemented experimentally in Refs. 33 and 34.

III. COUPLED TIP–RESONATOR–VIBRATION
DYNAMICS IN THE LINEAR REGIME
A. Lindblad quantum master equation

We start by generalizing the scheme in Fig. 1(a) to treat an
ensemble of N molecular vibrations with light–matter coupling
at rate gi of the ith molecular vibration with the resonator field.

In general, the uncoupled spectrum of the near-field is highly
structured,53 but for simplicity, we assume a single-mode resonator
field with annihilation operator â and resonance frequency ωa.
The total system Hamiltonian can be written as (we use h ≡ 1
throughout)

ĤN = ωa â†â +
N

∑
i=1

T̂i + V̂ i(q) + gi d̂i(q)⊗ (â + â†
), (3)

where T̂i and V̂ i(q) are the nuclear kinetic energy and poten-
tial energy curve along the normal mode coordinate q in the ith
molecule, respectively, and d̂i(q) is a dimensionless electric dipole
operator that depends parametrically on the vibrational coordinate
q. The eigenstates ∣ν⟩ and eigenvalues Eν for each of the single-
molecule vibrational Hamiltonians (T̂i + V̂ i) are assumed to be
known from free space IR spectroscopy with ν = 0, 1, 2, . . . being the
vibrational quantum number.

We model driving and dissipation in the evolution of the
reduced density matrix of the coupled molecule–resonator system
ρ̂S(t) with a quantum master equation of the Lindblad form,63

d
dt
ρ̂S = −i[ĤN + ĤF(t), ρ̂S] +Lκ[ρ̂S] +LγC[ρ̂S] +LγL[ρ̂S], (4)

where [Â, B̂] denotes a commutator and L[ρ̂s] is a superoperator
that describes dissipation. The system Hamiltonian ĤN is adapted
from Eq. (3), and the driving term is given by

ĤF(t) = Fd(t)[âeiωdt
+ â†e−iωdt

], (5)

where Fd(t) is proportional to the photon flux of the laser pulse. For
dissipation, we consider photon decay at the overall rate κ and vibra-
tional relaxation into a local reservoir at rate γL and into a collective
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reservoir at rate γC. For specific expressions of the dissipators, see
Appendix A.

B. The vibrational Purcell effect
We first consider weak driving conditions (∣Fd∣/κ≪ 1). Far-

field photons injected into the near-field can leak out on femtosec-
ond time scales due to the short photon lifetimes of typical IR
antenna resonators. Therefore, vibrational ladder climbing cannot
occur over a pulse duration. Since only ν = 0 and ν = 1 levels can be
probed, the local vibrational potential can be truncated to quadratic
terms in q, i.e., V i(q) ≈ ωvq2

/2, and the dipole function d(q) up
to linear terms.64,65 We further ignore counter-rotating terms in
Eq. (3) and the inhomogeneity in the vibrational frequencies and
Rabi couplings.

From Eq. (4), we derive the following set of coupled equations
for light and matter coherences:

d
dt
⟨â⟩ = −(iωa + κ/2)⟨â⟩ − i

√
Ng⟨B̂0⟩ − iF̃d(t), (6)

d
dt
⟨B̂0⟩ = −(iωv + γ/2)⟨B̂0⟩ − i

√
Ng⟨â⟩, (7)

where the material coherence is modeled as a collective oscilla-
tor B̂0 ≡ ∑i b̂i/

√
N with b̂i being a local vibrational mode operator.

γ ≡ NγC + γL and F̃d ≡ Fd(t) exp[−iωdt] with carrier frequency ωd.
Equations (6) and (7) correspond to driven coupled oscillators in
the mean field and can be shown to be equivalent to the classical
oscillator picture.32 For a single excitation pulse of arbitrary shape
and frequency, exact analytical solutions for ⟨â(t)⟩ and ⟨B̂0(t)⟩ are
given in Appendix B, which are valid both in the weak and strong
coupling regimes and are consistent with previous work.66

We test the predictions of Eqs. (6) and (7) by reprocessing
experimental data from Ref. 34 on the dynamics of the near-field
Enf(t)∝ ⟨â(t)⟩ for gold nanowire antennas coated with a thin
film of poly(methyl-methacrylate) (PMMA) for its carbonyl (C=O)
stretch mode vibrational oscillators under the influence of a single
femtosecond IR pulse. We model the pulse with a Gaussian driving

term Fd(t) = (F0/
√

2πT) exp[−(t − t0)
2
/2T2
], where T = 155 fs is

the pulse duration. ∣F0∣
2 is proportional to the photon flux per pulse

injected to the resonator field. The pulse is centered at t0, and the
system is initially in the absolute ground state (no photonic or mate-
rial excitation). From the analysis in the following, we estimate the
ratio 4

√
Ng/∣κ − γ∣ ≈ 0.3 (weak coupling) for these experiments.

The tip-enhanced antenna near-field detection scheme is illus-
trated in Fig. 2(a). The IR pulse drives the molecule-coupled res-
onator, and the coherently scattered IR near-field is measured
interferometrically by heterodyne detection.67 Figure 2(b) shows the
experimental coherence Re⟨â(t)⟩ for N ∼ 103 carbonyl oscillators
per mode volume.34 The antenna frequency ωa is resonant with the
carbonyl vibration frequency ωv in the polymer. κ is obtained from
the width of the far-field scattering spectrum of the antenna (κ/2π
= FWHM). Carbonyl vibration frequencies and linewidths in
PMMA can be found in the range ωv = 1730–1745 cm−1 and γ/2π
∼ 10–30 cm−1.67

In Fig. 2(c), we show the simulated vibrational coherence
Re⟨B̂0(t)⟩, obtained from Eqs. (6) and (7) with parameters calibrated
with the data in Fig. 2(b). By setting the collective Rabi coupling
to
√

Ng = 41 cm−1, the free-induction decay (FID) of the molecu-
lar coherence is found to match the experimental dephasing time
(T2γ = 347 fs) within the measurement uncertainties.

The direct equivalence between the decay time of the collec-
tive oscillator coherence ⟨B̂0(t)⟩ and the resonator field ⟨â(t)⟩ is
demonstrated in Appendix A. There, we show that long after the
pulse is over (t ≫ t0 + T), the collective oscillator in a fully resonant
scenario ωa = ωv = ωd decays as

⟨B̂0(t)⟩ ≈
√

Ng f0

Γg
eγ̃

2T2/4 e−iωvt−γ̃(t−t0)/2, (8)

where Γg ≡ Re{
√
Δ2
Γ − 4Ng2}, ΔΓ = (γ − κ)/2, and the coupled

vibrational decay rate γ̃ = γPvib, written in terms of the vibrational
Purcell factor

Pvib = 1 +
4Ng2

κγ
. (9)

FIG. 2. Vibrational Purcell effect. (a) Field detection scheme for the PMMA-coated nanowire with the nanoscale local probing at the wire terminal. (b) Pulse-driven res-
onator field Re⟨â(t)⟩ measured in Ref. 34 for a resonant molecular vibration–antenna system (ωv = ωa). The measured lifetime of the FID signal is T2γ = 345 ± 10 fs

(boxed region, inset). (c) Simulated collective molecular coherence Re⟨B̂0(t)⟩ under equivalent conditions as in experiments with dephasing time T2γ = 347 fs for
√

Ng

= 41.5 cm−1. (d) Simulated vibrational dephasing time as a function of the resonator frequency, assuming fixed coupling constant
√

Ng = 41.5 cm−1 (red diamonds) and
coupling constant scaling with the antenna resonance,

√
Ng ∝ ωa (blue circles). The dashed line marks the vibrational frequency ωv. In (b) and (c), the driving pulse is

centered at t0 = 600 fs and has a duration of T = 155 fs. We use (ωv, κ/2π, γ/2π) = (1732, 519, 17) cm−1.
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Pvib quantifies the additional contribution to material relaxation
that emerges from the coupling of the vibrational motion to the
fast-decaying resonator field. In this Purcell-enhanced regime, the
coupled vibrational dephasing time drops below its free space value
of T0

2γ = 620 fs in agreement with Eq. (2).
In Fig. 2(d), we compare the measured and simulated vibra-

tional dephasing times T2γ as a function of the resonator frequency
ωa. The measured asymmetry with respect to the detuning from res-
onance, i.e., Δa ≡ ωa − ωv, can be attributed to the strong frequency
dependence of κ and g in nanoresonators.45,47,50 For comparison,
an infrared cavity with frequency-independent κ and g would result
in a symmetric Purcell factor as a function of detuning of the form
Pvib(Δa) = 1 +Ng2ΔΓ/γ(Δ2

a + Δ2
Γ). On the other hand, partial agree-

ment with experiments is obtained for red-detuned resonators when
we assume the frequency-independent Rabi coupling

√
Ng to be

41 cm−1. In this case, the asymmetry is not captured, and the Purcell
factor is underestimated for antennas that are blue detuned from the
vibrational resonance.

In order to capture the asymmetry observed in experiments
[Fig. 2(d), shaded area], we extract the frequency-dependent decay
rates κ(ωa) from the scattering spectra of a series of gold infrared
resonators (see Appendix A for details). Then

√
Ng is set for

different values of ωa to match the measured and simulated vibra-
tional T2γ times for the resonators. Under the assumption that
the molecule number N is only determined by the density of car-
bonyl bonds in the polymer film, we obtain a linear scaling of the
single-molecule coupling g ∝ ωa to match the experimental dephas-
ing times over the entire range of resonator frequencies studied.
These scalings, in principle, can be derived with a macroscopic QED
analysis,45 but this is outside the scope of the semi-empirical
approach adopted in this work. The modification of dephasing times
T2γ is a result of the antenna–vibration coupling rate exceeding
the intramolecular non-radiative relaxation κnr. The antenna acts as
an external agent that modifies molecular IR emission, as Fig. 1(a)
illustrates.

C. Nanotip control of the resonator phase
In Sec. III B, the nanotip only negligibly affects the molecule-

antenna coupling itself and simply serves as a local probe of the near-
field response.34 We now relax this assumption by explicitly con-
sidering the relevant degrees of freedom of the tip in the quantum
master equation in order to build physical insight on the conditions
necessary for a nanotip to induce coherent phase transformations on
the infrared near-field, as shown in recent experiments.33

We start by modeling the electromagnetic field of the local-
ized surface plasmon resonance at the tip apex with a bosonic
operator ĉ at frequency ωt. The tip couples directly to the antenna
resonator field with coupling strength gat and, in principle, can
also couple directly to the molecular vibrations with a collective
coupling strength

√
Ngvt. For simplicity, we assume that the tip

field couples with the same number of vibrations N as the antenna
field. The tip–antenna–vibration Hamiltonian can thus be written
as Ĥ = ĤN + ĤT , where the term ĤN is given by Eq. (3) and ĤT is
given by

ĤT = ωtĉ†ĉ + gat(â†ĉ + âĉ†) +
√

Ngvt(B̂0ĉ† + B̂†
0 ĉ). (10)

Figure 3(a) illustrates the tip–antenna–vibration system.
Depending on the lateral tip position x, the phase front of a far-field
pulse can be different at the tip apex relative to an antenna reference
position due to a path length difference (retardation). Denoting this
relative phase by Δϕ = neff2πx/λa, where λa is the laser wavelength
and neff is the refractive index of the medium, the coherent driving
term in Eq. (5) now generalizes to

ĤF(t) = F1ϕ1(t)â eı̇(ω1t+Δϕ)
+ F2ϕ2(t) eı̇ω2t ĉ + H.c., (11)

which separately describes driving of the resonator and the tip.
“H.c.” stands for the Hermitian conjugate. The local pulse profiles
are denoted by ϕi(t) = exp[−(t − t0)

2
/2T2

i ], where i = 1 denotes the
resonator and i = 2 denotes the tip. Fi is the peak field amplitude,
and ωi is the carrier frequency. Photon decay now also occurs due
to the finite lifetime of the tip field at rate κt, which again includes
both radiative and non-radiative contributions. For clarity, we have
changed the notation from κ to κa for the photon decay rate of the
antenna field.

By constructing a quantum master equation with the Hamilto-
nians in Eqs. (10) and (11), in Appendix C, we derive coupled mean
field equations for ⟨â(t)⟩, ⟨B̂0(t)⟩, and ⟨ĉ(t)⟩. In order to model the
experiments in Ref. 33, we set gvt = 0, F1 = F2 = F, and ϕ1(t) = ϕ2(t)
= ϕ(t) and solve for the resonator field in the Fourier domain
as ⟨â(ω)⟩ = χT(ω)F̃(ω), where χT(ω) is the coupled resonator
response function and F̃(ω) ≡ Fϕ(ω) is the frequency-domain pulse
amplitude. With the full analytical expression for χT(ω) given in
Appendix C, for the conditions relevant to Ref. 33, we obtain

χT(ω) ≈
χa(ω)[eı̇Δϕ + gatχt(ω)]

1 − χa(ω)[Ng2
avχv(ω) + g2

atχt(ω)]
, (12)

where χa(ω) ≡ (ω − ωa − ı̇κa/2)−1 is the response of the bare
antenna, χv(ω) = (ω − ωv − ı̇γ/2)−1 is the bare vibrational response,
and χt(ω) = (ω − ωt − ı̇κt/2)−1 is the bare tip response. For clar-
ity, we have changed the notation from g to gav for the molecule
antenna–vibration coupling.

Figure 3(b) shows the measured imaginary part of χT(ω) as
a function of the relative phase Δϕ, reconstructed from data in
Ref. 33. The line shape changes from absorptive to dispersive as
the relative phase Δϕ∝ x/λa increases. For Δϕ ≈ 0, the response is
purely absorptive and exhibits a Rabi splitting Ω ≈ 46 cm−1 around
the bare vibrational resonance in close agreement with the reported
Ω = 47 ± 5 cm−1 in Ref. 33 that corresponds to a population transfer
of 115 fs or a coherence transfer of 230 fs. From the Rabi splitting, we
estimate

√
Ngav = 23 cm−1 and a ratio 4

√
Ngav/∣κa − γ∣ ≈ 1.6, which

fulfills the hybridization condition under resonance.
In Fig. 3(c), we plot the simulated response of the coupled res-

onator with a set of parameters extracted from the data in Fig. 3(b).
The simulated phase rotation of the response is in qualitative agree-
ment with experiments although further calibration work similar
to the one carried out in Sec. III B would be needed to reproduce
experimentally observed frequency shifts and spectral asymmetries
observed in experiments [Fig. 3(b)] but not in the theory.

As a figure-of-merit for the phase rotation, we choose
Φ ≡ tan−1

(Im[χT]/Re[χT]) at the vibrational frequency ωv.
In Fig. 3(d), we show the dependence of Φ(ωv) on the

J. Chem. Phys. 156, 124110 (2022); doi: 10.1063/5.0075894 156, 124110-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Nanotip-induced phase rotation. (a) Molecular coupled IR antenna with vertical field confinement length l0, probed by the scanning nanotip. (b) Exper-
imentally observed imaginary part of the coupled system response χT(ω) antenna with resonance wavelength λa = 5.8 μm (L = 1.75 μm) for different values
of the relative phase Δϕ = 2πx/λa. The vibrational resonance frequency is ωv = 1730 cm−1. (c) Simulated system response for selected values of Δϕ with
(γ/2π,ωa, κa/2π,

√
Ngav, κt/2π, gat) = (21, 1735, 80, 23, 800, 12) cm−1. The bare vibrational and antenna responses χv(ω) and χa(ω) are shown for reference. (d)

Antenna phase response at the vibrational resonance Φ(ωv) as a function of the input phase Δϕ and the detuning-to-Rabi frequency ratio Δa/
√

Ngav. Phase cuts i–iii at
selected antenna detunings are highlighted. (e) Normalized real and imaginary parts of the total response χT(ω) for input phases Δϕ = 0 (solid lines) and π/4 (dashed

lines) for Δa = −11
√

Ngav (cut i in panel d). (f) Phasor diagram of the complex total response at the vibrational resonance ∣χT(ωv)∣eı̇Φ(ωv) for cuts i–iii. Arrows show the
direction of increasing Δϕ.

antenna–vibration detuning Δa and the input phase Δϕ. Frequency
cuts at different detunings (cuts i–iii) show the predicted linear
phase-to-phase relation at the fixed antenna frequency. The
experiments in Ref. 33 correspond to Δa ≈ 0 (cut ii). In Fig. 3(e),
we show the real and imaginary parts of the total response χT(ω)
for a red-detuned antenna field (ωa = 1485 cm−1) for Δϕ = 0
and Δϕ = π/2, highlighting the phase inversion at the vibrational
resonance. In Fig. 3(f), we show a phasor diagram with sequences of
the complex response at ωv, i.e., ∣χT(ωv)∣eiΦ(ωv), as the input phase
Δϕ is tuned from 0 to π/2. The predicted sequences correspond to
different values of Δa.

Complementary to the Fourier-domain picture, the tip-
induced phase rotations in Fig. 3 can be understood more generally
from a time-domain perspective. For this, we exploit the separation
of timescales T2κt ≪ T2κa , where T2κt = 2/κt, such that the tip field
instantaneously adjusts to the dynamics of the antenna–vibration
sub-system. We then adiabatically eliminate the tip variable ⟨ĉ(t)⟩
from the equations of motion and derive tip-renormalized evolution
equations for ⟨â⟩ and ⟨B̂0⟩ of the form

d
dt
⟨â⟩ = −(iω′a + κ

′
/2)⟨â⟩ − g′av⟨B̂0⟩ + Ea(t,Δϕ), (13)

d
dt
⟨B̂0⟩ = −(ı̇ω′v + γ

′
/2)⟨B̂0⟩ − g′av⟨â⟩ + Ev(t). (14)

In comparison with Eqs. (6) and (7), the system frequencies and
decay rates are now modified by the interaction with the tip.
Expressions of the modified system frequencies ω′i , decay rates
(κ′ and γ′), and light–matter coupling strength g′av are given in
Appendix C. The tip drives the resonator with a phase-dependent
source Ea(t,Δϕ) and also the molecular vibrations through the
source term Ev(t)when gvt ≠ 0. Full expressions for the tip-modified
system frequencies, decay rates, and driving sources can be found in
Appendix C.

We solve Eqs. (13) and (14) using Laplace transform techniques
with gvt = 0 to obtain an expression for the resonator field of the
form

⟨â(s)⟩ = ζ eiθ
×
(s + γ′/2 + iω′v)

p(s)
F(s), (15)

where the polynomial p(s) ≡ s2
− s(iω′c + κ′/2)(γ′/2 + iω′v) + g′2av

encodes the coupled system eigenfrequencies. F(s) is the Laplace
transform of the driving pulse. This expression shows that the
resonator field is modulated by the stationary complex amplitude
Z = g′at − ieiΔϕ

≡ ζeiθ, where g′at ≈ −2gat/κt is a dimensionless
tip–antenna coupling parameter. For ∣g′at∣≪ 1, the coupled
resonator response is rotated by θ ≈ Δϕ − π/2 (g′at = −0.03 in Fig. 3).
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By inverting Eq. (15) back to the time domain, the influ-
ence of the tip can be understood quantum mechanically as the
time-independent phase-space transformation,

â(t)→ ζ eiθâ† ââ(t)e−iθâ† â, (16)

which is a basic transformation in optical quantum information
processing.68

To summarize this section, we show that coherent field retar-
dation effects observed in tip–antenna experiments can be simply
encoded into the system Hamiltonian as relative phases between
input driving fields [see Eq. (11)], thus facilitating a rapid anal-
ysis of tip-induced interference effects in comparison with a
full vectorial electromagnetic field simulation.69 The equations of
motion obtained from the Lindblad quantum master equation admit
Fourier-domain solutions that highlight the role of destructive and
constructive interferences between the tip and antenna fields in
the complex response of the coupled system [see Eq. (12)]. In
comparison with our previous classical treatment of the coupled
tip–antenna–vibration response in Ref. 33, the quantum optics
approach removes the ambiguities in the definition of the uncoupled
mode frequencies, thus facilitating the analysis of the coupled spec-
tra. The quantum approach also predicts changes in both the phase
and amplitude of the coupled response at the vibrational frequency
ωv (see Fig. 3(f)], which are not predicted classically.

The quantum picture shows that in a broadband limit where
tip-localized photons decay much faster than in the near-field
of the antenna resonator, reduced evolution equations for the
antenna–vibration system can be derived such that its parame-
ters depend explicitly on the tip–antenna coupling strength gat,
which is ultimately given by the overlap between the correspond-
ing evanescent fields.70 Coherent tip-induced phase-space rotations
of the infrared near-field [see Eq. (16)] can thus be quantitatively
studied as a function of design parameters such as quality fac-
tors, resonance frequencies, and field profiles. We expect this to

accelerate the development of mid-infrared quantum information
devices. In what follows, we further explore the reach of the pro-
posed quantum optics formalism beyond what has been currently
done in experiments.

D. Tip-induced modulation of strong coupling
In addition to modifying the phase of the near-field by vary-

ing the lateral position x relative to the resonator surface, nanotips
can also contribute to the crossover from weak to strong coupling
as the vertical position z is tuned. Local modulation of strong cou-
pling has been demonstrated with quantum dot emitters in optical
nanoresonators71,72 but has yet to be implemented with infrared
nanostructures. In order to theoretically study these effects, we now
generalize the analysis in Sec. III C to allow for a more active role of
the tip nanoprobe in the light–matter interaction process, beyond
just probing the vibration–antenna coupling dynamics. Since the
tip motion is essentially frozen over the relevant spectroscopic
timescales, its position (x, z) can be mapped to stationary magni-
tudes of the tip–antenna coupling gat and tip–vibration couplings
gvt as well as the input phase Δϕ. In order to focus on the inter-
ference between the tip–vibration and antenna–vibration couplings,
throughout this section, we set Δϕ = 0.

In Fig. 4(a) we show the response of the coupled
antenna–vibration system with Rabi splitting Ω ≈ 46 cm−1,
probed by a broadband tip (κt ≫ gat) that is not directly coupled to
vibrations [see also Fig. 3(c)]. For such a nanoprobe, we predict that
by increasing the tip–vibration coupling strength

√
Ngvt beyond the

antenna and vibrational linewidths κa (80 cm−1) and γ (21 cm−1),
for instance, by bringing the tip closer to the molecular layer,
the Rabi splitting in the response does not increase but actually
disappears. In this case, the broadband tip simply acts as an
additional photonic bath for the molecules, effectively broadening
the vibrational resonance through the Purcell effect discussed in
Sec. III B when the tip–vibration coupling is large enough.

FIG. 4. Tip–antenna interaction and strong coupling. (a) Absorptive response of a fully resonant coupled antenna–vibration–tip system near the vibration frequency
ωv = 1730 cm−1. Curves show the progression from a Rabi doublet with

√
Ngav = 25 cm−1 and vanishing tip–vibration coupling (i) to the simultaneous coupling with

a very broad tip with gvt = 150 cm−1 (ii). Vertical dashed lines indicate the bare antenna linewidth κa/2π = 80 cm−1. (b) Progression of the response for a decreasing
tip linewidth from κt/2π = 800 cm−1 (ii) to κt/2π = 80 cm−1 (iii); all other parameters are kept constant. The emergence of a Rabi doublet at ωv ± gvt is highlighted with
triangles. (c) Progression as the antenna–vibration coupling decreases from

√
Ngav = 25 cm−1 (iii) to zero (iv). Fano interference at the lower Rabi peak is highlighted with

a triangle. In all panels, the tip–antenna interaction is set to gat = 12 cm−1, the relative tip–antenna phase is Δϕ = 0, and the insets show representative bare responses of
the antenna χa, the tip χt, and the molecular vibration χv (γ/2π = 21 cm−1).
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In Fig. 4(b), we show that a Rabi splitting can be recovered if
the tip lifetime increases, while keeping gvt and all other parameters
constant. For κt comparable to κa, the separation of timescales used
in Sec. III C does not apply. For large enough

√
Ngvt, the coupled

antenna response consists of one center resonant feature at ωa = ωv
of width κa and two Rabi sidebands symmetrically located around
the vibrational resonance at ω = ωv ±

√
Ngvt, which is the Fourier-

domain signature of strong coupling (Ng2
vt/κtγ = 13.4). Note that

while the contribution of the bare antenna–vibration coupling to
the Rabi splitting is negligible for the chosen parameters (gav/gvt
= 0.17), the strong tip–vibration coupling maps into the observable
⟨â(ω)⟩ due to the finite tip–antenna coupling gat.

As a third case study of the predicted linear response of the
tip–antenna–vibration system, we show in Fig. 4(c) that the line
shape of the Rabi split sidebands can be modified due to destructive
and constructive Fano interference between overlapping response
functions. In particular, the lower Rabi sideband has an absorption
dip at ωv −Ωvt/2, where Ωvt ≡

√
Ngvt/2 is the tip-induced splitting

(300 cm−1
). We can understand this interference effect analyti-

cally, starting from a complete expression of the Fourier response
of the resonator field of the form χT(ω) = χ1 + χ2 + χ3 + χ4, where
the definition of the individual contributions is given in Eq. (C7) of
Appendix C. For gvt = 0, the full expression of the response reduces
to Eq. (12) as a special case. The graphical analysis of the individual
response terms is also given in Appendix C.

For the Fano line shape in Fig. 4(c) (curve iv), we turn off
the antenna–vibration coupling (gav = 0) and set κa = κt = κ with-
out losing generality. In this fully resonant scenario (ωv = ωa = ωt),
we can approximately write the absorptive response of the cou-
pled resonator at the frequencies of the lower and upper sidebands
ω± ≡ ωv ±Ωvt/2 as

ImχT(ω±) ≈
1

√
Ngvt
[

κ/2
√

Ngvt
±

gat

κ/2
], (17)

showing destructive interference of the tip–vibration and
tip–antenna responses at the lower sideband ω− and constructive
interference at the upper sideband ω+.

These results illustrate one of the key strengths of the semi-
empirical Markovian quantum master equation approach: seem-
ingly different quantum phenomena, such as the Purcell effect, Rabi
splitting, and Fano interference, all emerge naturally from the same
equations of motion in different parameter regimes. The quan-
tum mechanical equations admit transparent analytical solutions for
the system response that can be exploited for analyzing different
experimental scenarios. In particular, theory suggests that in order
to explore the fundamental connection between Rabi splitting and
Fano interference with molecular vibrations, novel nanotip designs
with narrow-band plasmonic resonances in the mid-infrared should
be engineered.

IV. ANHARMONIC BLOCKADE EFFECT FOR STRONG
DRIVING PULSES

After comparing the predictions of the Lindblad theory with
linear response experiments on resonator-molecule systems in weak
coupling34 and strong coupling,33 we now explore what the formal-
ism predicts under strong driving conditions, motivated by search

of unconventional infrared signals that are sensitive to the spec-
tral anharmonicity of molecular or material vibrations. In quantum
optics, the ability to implement nonlinear optical transformations
on the electromagnetic field that are relevant in quantum metrology
depends on the anharmonicity of the system energy levels.73 Such
anharmonicities can occur, for example, due to strong light–matter
coupling with individual dipoles,59 via optomechanical interac-
tions,60 or due to long-range interactions between material dipoles.61

The vibrational levels of individual molecules have an intrinsic
anharmonicity that is well understood in free space74–76 and has
been recently studied in Fabry–Perot infrared cavities under strong
coupling.23,24,77,78

In Fig. 5(a), we illustrate the input–output scheme describing
the phase evolution of the driven infrared near-field in a coupled
vibration–resonator system. Relative to the phase of the driving
pulse, the scattered pulsed field in the Fourier domain has a phase
response of the form ΔΦ(ω) = ΔΦL(ω) + ΔΦNL(ω), where ΔΦL
is a trivial intensity-independent linear shift introduced by a tip
nanoprobe and ΔΦNL is a nonlinear contribution to the phase shift
that depends on the driving pulse intensity. In this section, we pro-
pose a scheme to transfer the natural anharmonicity of vibrational
energy levels to the phase response of the coupled system under
conditions of strong pulse driving and weak vibration–resonator
coupling (low cooperativity). We develop an approximate theo-
retical model based on the Lindblad quantum master equation to
obtain the dependence of the nonlinear phase shift ΔΦNL with the
nominal pulse power and the degree of vibrational anharmonicity.
While our analysis focuses on a collection of N molecular vibra-
tions, the theory may also be applicable to describe other physical
systems with anharmonic infrared and THz dipoles such as inter-
subband quantum well transitions37 and confined phonons in polar
nanocrystals.79

A. Vibrational anharmonicity model
The simplest anharmonicity model for a chemical bond relates

to the expansion of the Born–Oppenheimer (BO) potential V(q
− qe) = ∑k αk(q − qe)

k beyond second order around the equilib-
rium bond length qe. Quartic nonlinearities (k = 4) give a suffi-
cient description of spectral anharmonicities in vibrational modes
with parity-symmetric BO potentials near equilibrium80 and have
been studied in the context of vibrational strong coupling spec-
troscopy in Fabry–Perot resonators.77 This nonlinearity decreases
the energy spacing between subsequent vibrational levels. In par-
ticular, the energy gap between the ν = 1 and ν = 2 levels is lower
than the fundamental frequency ωv by the anharmonic parameter
Δ21. The latter typically varies in the range 10–40 cm−1 for poly-
atomic molecules.24,81,82 Minimal models for quartic nonlinearities
have been used extensively in nonlinear IR spectroscopy.74–76 In
their simplest form, the vibrational Hamiltonian for a single mode
can be written in terms of harmonic oscillator variables b̂i in the Kerr
form74

T̂i + V̂ i(q) ≈ ωvb̂†
i b̂i −U b̂†

i b̂†
i b̂ib̂i, (18)

with U = ∣Δ21∣/2. More general molecular anharmonicities that
break parity have also been studied in the context of molecular cavity
QED.24,64,65
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FIG. 5. Power-dependent phase rotation of the vibrational coherence. (a) Schematic picture of coherently scattered fields in molecule-coupled resonators. The output phase
contains the driving phase Φin as well as linear and nonlinear phase shifts, ΔΦL and ΔΦNL. (b) Evolution of the collective coherence Re⟨B̂0(t)⟩ for N = 3 anharmonic
vibrations (U = 20 cm−1) subject to a single 155 fs pulse centered at 600 fs with driving strength parameters F0/κ = 0.6 (solid line) and F0/κ = 0.01 (dashed line). The
delay δτ between the weak and strong field responses is highlighted. The inset shows a magnified view of the FID signal after the pulse is over (boxed region). (c) Nonlinear
phase ΔΦNL at bare resonance (ωv = 1732 cm−1) as a function of the molecule number N, obtained from exact solutions of the quantum master equation. Curves are
shown for different values of F0/κ. (d) Level scheme for resonant coupling between the antenna photon levels with anharmonic vibrations in the presence of a strong pulse.
The ground and first excited levels exchange coherence and population resonantly, but the transition from the first to the second vibrational level is detuned from the antenna
by Δ21 = 2U. Level populations at the pulse maximum are represented as circles of different sizes. g10 and g21 denote state-dependent Rabi frequencies. (e) Imaginary
part of the FID signal in the frequency domain for anharmonic oscillators with Δ21 = 40 cm−1, obtained from the nonlinear chirping model. Curves are labeled by the ratio
F0/κ. (f) Nonlinear phase ΔΦ(ωv) as a function of the ratio F0/κ, as predicted by the nonlinear chirping model. Curves are shown for different molecule numbers N. Exact
results from the quantum master equation for N = 1 are also shown for comparison. We set ωv = ωa = ωd with other parameters as in Fig. 2.

B. Anharmonic blockade effect for strong pulsed
excitation

We can simulate the coupled light–matter dynamics of anhar-
monic vibrations coupled to an infrared resonator by solving the
quantum master equation in Eq. (4) with the local anharmonic
vibrational Hamiltonian in Eq. (18) for a system of N molecules.
The single-molecule Rabi frequency g, the local vibrational relax-
ation rate γL, and the cavity decay rate κ are set to be the same as
in Fig. 2, i.e., the system is in weak coupling. For a driving strength
parameter F0/κ ≳ 0.1, we numerically compute the evolution of the
collective coherence ⟨B̂0⟩ = ∑i⟨b̂i⟩/

√
N by integrating the quantum

master equation in a local vibrational basis up to N = 4. An exact
integration of the quantum master equation for larger ensembles
is computationally challenging, given the exponential scaling of the
density matrix with the size of the basis set.

In Fig. 5(b), we plot the evolution of Re⟨B̂0⟩ for N = 3 and
F0/κ = 0.6, obtained as described above (solid line). We also show
the response of a coupled system driven by a pulse that has the
same normalized temporal profile (t0 = 600 fs and T = 155 fs) but is
much weaker (F0/κ = 0.01, linear response). Resonant coupling and

driving is assumed (ωv = ωa = ωd), and the single-molecule nonlin-
earity parameter is U = 20 cm−1. The strongly driven signal develops
a time delay δτ of a fraction of a cycle relative to weak driving (inset).
This delay builds up gradually while the pulse is on and remains con-
stant after the pulse is over. The vibrational decay time (T2γ) does
not depend on the pulse strength.

From the complex time-domain signal ⟨B̂0(t)⟩, we compute the
phase spectrum ϕ(ω) in the Fourier domain and evaluate it at ωv.
We repeat for weak and strong driving conditions to get the nonlin-
ear phase shift ΔΦNL(ωv) = ϕstrong(ωv) − ϕweak(ωv), where ϕstrong is
the signal phase under strong driving and ϕweak is the phase for the
same coupled system subject to a weak reference pulse. In Fig. 5(c),
we show the finite-size scaling of the nonlinear phase ΔΦNL(ωv)

with N for different driving strengths. The results highlight the main
qualitative physics of the problem: (i) For a fixed molecule num-
ber and photon lifetime, the phase nonlinearity increases with pulse
power. This is expected since the deviation from a pure harmonic
oscillator becomes relevant when the system is excited to higher
vibrational levels, which requires higher pulse intensities. (ii) For
a given pulse strength, the phase nonlinearity decreases with the
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increasing particle number. This excitation dilution effect has been
studied extensively for ensembles of two-level systems83 and more
recently for multi-level systems.84

We propose a vibrational chirping mechanism to understand
the predicted nonlinear phase shift. Figure 5(d) illustrates a repre-
sentative population distribution in the ground and first two excited
levels of the photon field and the molecular vibrations at the peak
amplitude of a strong driving pulse. For the strong field response
in Fig. 5(b), the photonic and vibrational ground states are signifi-
cantly depleted (see population evolution in Fig. 7 in Appendix D).
For resonant coupling (ω0 = ωv), population and coherence trans-
fer between the light–matter states ∣n = 0⟩∣ν = 1⟩ and ∣n = 1⟩∣ν = 0⟩
occurs rapidly and resonantly at the Rabi frequency g10, propor-
tional to the fundamental transition dipole ⟨ν = 1∣d̂∣ν = 0⟩. Since
the pulse also populates the two-photon state ∣n = 2⟩, population
and coherence exchange can occur between the states ∣n = 2⟩∣ν = 1⟩
and ∣n = 1⟩∣ν = 2⟩ at the rate g21, proportional to the excited transi-
tion dipole ⟨ν = 2∣d̂∣ν = 1⟩. However, this exchange is not resonant
due to the anharmonic shift Δ21 of the ν = 2 vibrational level. The
excited photon field thus becomes transiently blue detuned from the
ν = 2→ ν = 1 transition. This transient detuning introduces a delay
δτ in the response of the coupled vibration–resonator system, rel-
ative to a weak-pulse scenario in which no two-photon state is
produced. Since the detuning disappears immediately after the pulse
is over (T2κ ≪ T), the post-pulse delay is stationary and can be
measured interferometrically.

C. Modeling the power-dependent phase rotation
As we mention above, obtaining converged solutions of the

Lindblad master equation for large N is computationally hard. We
therefore develop an approximate model that can qualitative capture
the dependence with the pump power and particle number of the
nonlinear phase ΔΦNL shown by the finite-size analysis in Figs. 5(b)
and 5(c). The justification of the model is given in Appendix D, start-
ing from equations of motion for the local vibrational coherences
⟨b̂i⟩. The model reduces to a closed nonlinear system of equations
for the resonator coherence ⟨â⟩ and the collective vibrational coher-
ence ⟨B̂0⟩. The evolution of ⟨â⟩ is again governed by Eq. (6), but the
evolution of ⟨B̂0⟩ is now given by

d
dt
⟨B̂0⟩ = −(γ/2 + i[ωv − 2(U/N)∣⟨B̂0⟩∣

2
])⟨B̂0⟩ − i

√
Ng⟨â⟩, (19)

which differs from the weak driving evolution in Eq. (7) by the
emergence of an effective vibrational chirp term, i.e., ωv(t) = ωv
− 2U∣⟨B̂0(t)⟩∣2/N. The chirping effect captures the effective detun-
ing of the quantized field from transitions between higher vibra-
tional levels described above. The 1/N scaling of the chirp term
captures the excitation dilution effect.

In Fig. 5(e), we use this vibrational chirping model to show
that the time delay δτ in the system response can also change the
Fourier response from absorptive to dispersive as a function of
the pulse power (N = 20). This is reminiscent of the tip-induced
phase-space rotation described earlier in linear response (Sec. III C),
but now, the effect is due to molecular anharmonicity. We show
in Fig. 5(f) the scaling of the nonlinear phase shift ΔΦNL(ωv)

with the driving strength parameter F0/κ also within the chirping

model. Large phase shifts of order 0.1π are predicted for driving
strengths that are comparable to the photon decay rate (F0 ∼ κ)
using mesoscopic molecular ensembles (N ≲ 100). These proof-of-
concept results suggest the possibility of implementing nonlinear
phase switches based on natural vibrational anharmonicities with
currently available mid-infrared resonator architectures,34 provided
that high excitation densities can be sustained.

V. DISCUSSION AND CONCLUSION
In this work, we propose a semi-empirical theoretical method-

ology based on a Markovian quantum optics model for study-
ing mid-infrared molecular nanophotonic devices. The method is
modular in the sense that the Hamiltonians and super-operators
respectively, that the coherent and dissipative evolution of bare
vibrational and photonic variables, can be independently param-
eterized from spectroscopic measurements of the uncoupled sub-
systems. By interferometrically measuring the photon lifetime in the
mid-IR near-field of an infrared antenna as a function of its reso-
nance frequency, the uncertainty of the procedure for calibrating
the light–matter coupling parameter of an antenna–vibration system
can be kept below the vibrational linewidth (∼10 cm−1), allow-
ing for theoretical predictions on the dynamics of the coupled
light–matter system with a few-femtosecond precision, which is
comparable with fully ab initio modeling based on macroscopic
QED,45,50 but at a lower computational cost. This theoretical accu-
racy is desirable for the development of quantum nanophotonic
devices that exploit natural phenomena in molecular materials
in the mid-IR.

We used the proposed quantum optics approach in Secs. III B
and III C to reinterpret recent nanoprobe spectroscopy measure-
ments in weak coupling34 and at the onset of strong coupling.33

The experiments were originally interpreted using classical oscilla-
tor models. Good quantitative and qualitative agreement is shown
between the classical and quantum models. Recent classical elec-
trodynamics simulations of plasmonic nanocrystal dimers predict
time-domain optical signals that are analog to the infrared response
discussed in Sec. III B,85 further emphasizing the known connection
between quantum and classical modeling of linear spectroscopy.32

We then used quantum theory in Sec. III D to understand gen-
eral design rules that would allow tip probes to actively manipulate
the observe Rabi splittings and Fano interferences that can occur in
the frequency response of coupled antenna–vibration systems. This
analysis should stimulate the implementation of novel tip architec-
tures with narrow-band plasmonic resonances that provide strong
field confinements in the mid-infrared regime.86

Finally, in Sec. IV, we studied novel infrared nonlinear effects
that can be expected under strong pulsed excitation. For strong
pulses that can induce population in the ν = 2 excited vibrational
level of the molecular ensemble, the phase response of a weakly
coupled antenna–vibration system acquires a measurable shift that
scales nonlinearly with the pulse power. This intensity-dependent
phase shift is transferred to the infrared field from the natural anhar-
monicity of the excited vibrational levels. By solving the underlying
quantum master equation in the basis of material and photonic
degrees of freedom, we trace the origin of the nonlinearity to a tran-
sient chirping effect in which the driven resonator field becomes blue
detuned with respect to the ν = 1→ ν = 2 transition when both the
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laser and the resonator are tuned to the fundamental vibrational res-
onance ν = 0→ ν = 1. This new type of vibrational blockade effect
is fundamentally different from other blockade mechanism in cavity
QED that relies on strong coupling,59 optomechanical couplings,60

or long-range interactions between material dipoles61 and is proof-
of-principle for the implementation of optical phase gates in the
mid-IR in near-future experiments.

In summary, we implement a semi-empirical quantum optics
framework for the quantitative and qualitative analysis of mid-
infrared nanophotonic devices that exploit the coupling of near-field
photons with localized vibrations in organic materials. By compar-
ing with state-of-the-art experiments, we validate the predictions of
the theory and demonstrate the feasibility of implementing classi-
cal linear and nonlinear phase operations on the infrared near-field,
which represent the foundations for further theoretical and exper-
imental work on quantum state preparation and control in the
mid-infrared. Our work thus paves the way for the development
of ultrafast quantum information processing at room temperature
with molecular vibrations in a range of frequencies that has yet to be
developed for optical quantum technology.
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APPENDIX A: CALIBRATION OF THE LINDBLAD
MASTER EQUATION

The reduced density matrix of the coupled light–matter sys-
tem ρ̂S(t) evolves according to the quantum master equation in the
Lindblad form,

d
dt
ρ̂S = −i[ĤN + ĤF(t), ρ̂S] +Lκ[ρ̂S] +LγC[ρ̂S] +LγL[ρ̂S], (A1)

where the undriven system Hamiltonian ĤN is given by Eq. (3) and
the dissipators are given by83

TABLE I. Measured resonator linewidth κ/2π and vibrational dephasing time Texp
2γ for

several resonance frequencies ωc. The last two columns show the predicted Rabi
coupling strengths and vibrational dephasing times.

ωa (cm−1) κ/2π (cm−1) Texp
2γ (fs)

√
Ng (cm−1) T2γ (fs)

1510 439.55 487.6 ± 52.9 30.5 488.6
1567 462.15 463.8 ± 29.5 31.0 464.1
1634 486.69 421.0 ± 20.9 32.5 423.8
1722 516.02 345.4 ± 10.3 40.2 346.8
1807 541.64 345.0 ± 8.2 41.5 338.0
1892 564.96 333.0 ± 9.2 49.0 336.1
1994 590.32 349.6 ± 13.2 54.0 349.1
2138 622.00 372.8 ± 18.9 59.7 374.8
2280 649.32 404.2 ± 23.6 63.5 404.7

Lκ[ρ̂] =
κ
2
(2 âρ̂â†

− â†â ρ̂ − ρ̂ â†â), (A2)

LγC[ρ̂] =
NγC

2
(2 B̂0ρ̂B̂†

0 − B̂†
0B̂0 ρ̂ − ρ̂ B̂†

0B̂0), (A3)

LγL[ρ̂] =
γL

2

N

∑
i=1
(2 b̂iρ̂b̂†

i − b̂†
i b̂i ρ̂ − ρ̂ b̂†

i b̂i). (A4)

κ is the resonator field decay rate, γN ≡ NγC is the vibrational relax-
ation rate into a collective reservoir (spontaneous emission and
intermolecular phonon mode), and γL is the vibrational relaxation
rate into a local reservoir (IVR).

We parameterize the quantum master equation in a two-step
process: (1) We fix the frequencies and linewidths of the bare res-
onator and vibrational resonances from independent measurements
taken in the absence of light–matter coupling. The infrared absorp-
tion linewidth in free space γ̃ ≡ γ/2π cm−1 (FWHM) gives the bare
dephasing time T0

2γ = 2/γ. The width of the antenna resonance
κ̃ = κ/2π cm−1 gives the bare photon dephasing time T0

2κ = 2/κ. (2)
The free parameter

√
Ng is obtained by comparing the experimental

decay time of the tail of the near-field interferogram, proportional
to ⟨â(t)⟩, with the simulated decay of ⟨B̂0(t)⟩. In Fig. 2(a), we fit
the experimental FID decays to the exponential exp[−t/T2γ]. We
repeat this fitting procedure for a set of FID signals of the same
resonator sample to get the experimental dephasing time Texp

2γ fs.
The value of

√
Ng to be used in simulations is obtained by impos-

ing the long-time decay time T2γ of ⟨B̂0(t)⟩ to match the decay
time obtained by fitting the experimental FID trace. Table I shows
the collective Rabi couplings that best reproduce the experimental
dephasing times T2γ in Fig. 2(c) for several resonator frequencies ωa

close to the vibrational resonance ωv = 1732 cm−1.

APPENDIX B: EXACT SOLUTIONS FOR ⟨â(t)⟩
AND ⟨B̂0(t)⟩ UNDER A SINGLE GAUSSIAN PULSE

The mean field equations of motion in Eqs. (6) and (7) can be
written in the form

⎛
⎜
⎝

y′1(t)

y′2(t)

⎞
⎟
⎠
=
⎛
⎜
⎝

a11 a12

a21 a22

⎞
⎟
⎠

⎛
⎜
⎝

y1(t)

y2(t)

⎞
⎟
⎠
+
⎛
⎜
⎝

f1(t)

0

⎞
⎟
⎠

(B1)
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with y1 = ⟨â⟩, y2 = ⟨B̂0⟩, a11 = −(κ/2 + iωa), a22 = −(γ/2 + iωv), and
a12 = a21 = −igN with gN =

√
Ng. The initial condition is (y1, y2)

T

= 0 at t = 0. The Gaussian driving function is given by

f1(t) = −i fT exp[−(t − t0)
2
/2T2

− iωdt], (B2)

where fT = f0/
√

2πT is the driving amplitude, T is the pulse width,
and ωd is the pulse carrier frequency. The pulse area is normal-
ized. Solving for Eq. (B1) in the Laplace domain gives a vibrational
coherence of the form

y2(t) =
a21

m1 −m2
∫

t

0
f1(τ)(em1(t−τ) − em2(t−τ))dτ, (B3)

where m1 and m2 are roots of the characteristic polynomial p(s)
= (s − a11)(s − a22) − a12a21, explicitly given by

m± =
1
2
(a11 + a22) ±

1
2

√
(a11 − a22)2 + 4a12a21 (B4)

with the upper sign corresponding to m1. In terms of physi-
cal parameters, we have mj ≡ m′j + im′′j = −(γ + κ)/4 − i(ωa + ωv)/2
± (Γg + iΩg)/2 with

Γg + iΩg ≡

√

(iΔa − ΔΓ)2 − 4g2
N . (B5)

The real quantities Γg and Ωg modify the decay rates and oscillation
frequencies of the coupled light–matter system, respectively. They
depend on the detuning Δa = (ωa − ωv) and the decay mismatch
ΔΓ = (γ − κ)/2.

Inserting Eq. (B2) in (B3) and evaluating the Gaussian integrals,
we obtain

y2(t) = −(
f0

2
)

g
(Γg + iΩg)

[em1tQ1(t) − em2tQ2(t)], (B6)

where we introduced the envelope functions

Qj(t) = e
1
2 k2

j T2+t0kj(erf[
t − t0 − kjT2
√

2T
] + erf[

t0 + kjT2
√

2T
]) (B7)

with kj ≡ −m′j − i(ωd +m′′j ) and erf(x) being the error function.
The odd parity of the error function enforces y2(0) = 0. Up to this
point, the solution is exact. For a pulse kick (T → 0) at t = t0, the
vibrational coherence in Eq. (B6) reduces to

y2(t ≫ t0) ≈ −
g f0

Γg + iΩg
eiωdt0[em1(t−t0) − em2(t−t0)], (B8)

determined only by the complex roots m1 and m2, independent
of the pulse duration T. For finite pulses, the dependence of the
coherence on the pulse duration is given by the Qj functions in
Eq. (B7).

Solving now for the antenna coherence y1(t), we get

y1(t) =
1

a21
(

d
dt

y2(t) − a22 y2(t))

= (
i f0

2
)

1
Γg + iΩg

[(m1 − a22)em1tQ1(t)

− (m2 − a22)em2tQ2(t)]

− (
i f0

2
)

1
Γg + iΩg

[em1t d
dt

Q1(t) − em2t d
dt

Q2(t)], (B9)

where in the first line we used y2(0) = 0. The derivative envelope
functions in the last line are given by

dQj(t)
dt

=
2

√
2πT

exp[−
(t − t0)

2

2T2 ] exp[−m′j + i(ωd −m′′j )], (B10)

which are essentially replicas of the input Gaussian pulse [Eq. (B2)],
modulated by an mj-dependent exponential factor ( j = 1, 2). For
t0 ≫ T, the antenna coherence also satisfies y1(0) = 0. In the limit
of continuous driving (T →∞ with T/t0 being a constant), the Qj
functions become independent of time for long times. The tran-
sient Gaussian-shape contribution to the antenna coherence thus
vanishes, as expected.

Weak coupling solution: Under exact resonance (ωa = ωv) and
large decay mismatch (∣ΔΓ∣≫ 2g), we have Ωg → 0 in Eq. (B5).
For κ≫ γ, we have m1 ≈ −γ̄/2 − iωv and m2 ≈ −κ̄/2 − iωa with cou-
pled decay rates γ̃ ≈ γ(1 + 4g2

N/κγ) and κ̃ ≈ κ(1 − 4g2
N/κ2
) (see also

Ref. 62). For a pulse detuning from the resonator frequency Δd
≡ ωd − ωa, the vibrational coherence can be written as

y2(t) =
√

Ng f0

2Γg
e−iωat−iΔdt0[e−γ̃(t−t0)/2Qγ(t − tγ)

− e−κ̃(t−t0)/2Qκ(t − tκ)], (B11)

where the timescales tγ ≡ t0 + γ̃T2
/2 and tκ ≡ t0 + κ̃T2

/2 can be
written generally as tα in the simplified envelope function

Qα(t − tα) ≈ (1 + erf[
t − tα
√

2T
])e

1
2 (α̃/2−iΔd)2T2

. (B12)

APPENDIX C: TIP–VIBRATION–RESONATOR SYSTEM
1. Coupled equations of motion

The dynamics considering dissipation can be treated with the
Lindblad master equation in Eq. (4) of the main text with the system
Hamiltonian given by Eqs. (10) and (11) plus by the tip dissipator,

Lκt[ρ̂S] = (κt/2)(2ĉρ̂Sĉ† − ĉ†ĉρ̂S − ρ̂Sĉ†ĉ), (C1)

where ρ̂S is the total dipole–resonator–tip system density matrix and
κt is the tip decay rate. From the Lindblad master equation, we obtain
evolution equations for the resonator, dipole, and tip mean fields of
the form

d
dt
⟨â⟩ = −(κa/2 + ı̇ωa)⟨â⟩ − ı̇gav⟨B̂0⟩ − ı̇gat⟨ĉ⟩

−ı̇F1ϕ1(t)e−ı̇(ωdt−Δϕ), (C2)
d
dt
⟨B̂0⟩ = −(γ/2 + ı̇ωv)⟨B̂0⟩ − ı̇gav⟨â⟩ − ı̇gvt⟨ĉ⟩, (C3)
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d
dt
⟨ĉ⟩ = −(κt/2 + ı̇ωt)⟨ĉ⟩ − ı̇gat⟨â⟩ − ı̇gvt⟨B̂0⟩

−ı̇F2ϕ2(t)e−ı̇ωet , (C4)

where we have absorbed the
√

N-dependence of the tip–vibration
and antenna–vibration couplings into gvt and gav, respectively.
ϕi(t) = exp[−(t − t0)

2
/2T2

i ] denotes a Gaussian pulse envelope.

2. Resonator response in the Fourier domain
Solving Eqs. (C2)–(C4) in the Fourier domain with

F1ϕ1(ω)e−iωdt
= F2ϕ2(ω)e−iωet

= F(t), we obtain the following
system of coupled differential equations:

M(ω)

⎛
⎜
⎜
⎜
⎜
⎝

â(ω)

b̂(ω)

ĉ(ω)

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

eiΔϕ

0

1

⎞
⎟
⎟
⎟
⎟
⎠

F(ω) (C5)

with

M(ω) =
⎛
⎜
⎜
⎜
⎝

1/χa(ω) −gav −gat

−gav 1/χv(ω) −gvt

−gat −gvt 1/χt(ω)

⎞
⎟
⎟
⎟
⎠

. (C6)

By solving Eq. (C5) for the resonator field â(ω) = χT(ω)F(ω), we
obtain an expression for the total field response function of the form

χT(ω) ≡ χ1(ω) + χ2(ω) + χ3(ω) + χ4(ω), (C7)
where

χ1(ω) = D−1
(ω)χa(ω)eı̇Δϕ, (C8)

χ2(ω) = −D−1
(ω)g2

vtχv(ω)χt(ω)χa(ω)eı̇Δϕ, (C9)

χ3(ω) = D−1
(ω)gatχa(ω)χt(ω), (C10)

χ4(ω) = D−1
(ω)gavgvtχv(ω)χa(ω)χt(ω) (C11)

with the bare response function given by

χa(ω) = (ω − ωa − ı̇κa/2)−1, (C12)

χv(ω) = (ω − ωv − ı̇γ/2)−1, (C13)

χt(ω) = (ω − ωt − ı̇κt/2)−1, (C14)

and

D(ω) = 1 − g2
avχa(ω)χv(ω) − g2

vtχt(ω)χv(ω)
−gatχa(ω)χt(ω)[gat + 2gavgvtχv(ω)]. (C15)

For gat = gav = 0, χT(ω) = χa(ω) up to a global phase, regardless
of gvt. In this regime, the antenna resonator is only a spectator of
the tip–vibration dynamics. On the other hand, when gvt = 0 and
ϕ1 = ϕ2, Eq. (C7) reduces to Eq. (12) of the main text.

To study the emergence of the Rabi sidebands in Fig. 4(b),
we show in Fig. 6 the individual contributions to χT(ω) under
conditions of strong tip–vibration coupling gvt > κ≫ gat ∼ gav ≫ γ,

FIG. 6. Absorptive response (Im[χ(ω)]) of a fully resonant coupled
antenna–vibration–tip system at the vibration frequency ωv = 1730 cm−1

(Black line). Dashed lines correspond to each term of the total antenna
response function in Eq. (C7) with the relative tip–antenna phase Δϕ = 0 and
(γ/2π, κa/2π, κt/2π,

√
Ngav, gat, gvt) = (21, 80, 80, 23, 12, 150) cm−1.

assuming a fully resonant scenario (ωv = ωa = ωt). In the Fano
regime, we set κt = κa = κ, Δϕ = 0, and gav = 0 (χ4 = 0) and evalu-
ate the non-vanishing terms of ImχT(ω) at ω = ωv ± gvt to obtain
Eq. (17) in the main text.

3. Adiabatic elimination of the tip dynamics
Under the frequency hierarchy κt ≫ κa ≳ γ, Eq. (C4) can be adi-

abatically eliminated from the system dynamics under steady state
conditions to give effective evolution equations for the resonator and
dipole coherences of the form

d
dt
⟨â⟩ = − (κ′/2 + ı̇ω′a)⟨â⟩ − g′av⟨B̂0⟩ + g′atF2ϕ2(t)e−ı̇ωet

+ ϵdF1ϕ1(t)e−ı̇ωdt , (C16)

d
dt
⟨B̂0⟩ = − (γ′/2 + ı̇ω′v)⟨B̂0⟩ − g′av⟨â⟩ + g′vtF2ϕ2(t)e−ı̇ωet , (C17)

which are analog to Eqs. (6) and (7) in the main text, except that
the bare system frequencies and light–matter coupling constants are
renormalized by the instantaneous tip amplitude as follows:

κ′ = κa +
4g2

at/κt

1 + 4Q2
t

, (C18)

γ̄ = γ +
4g2

vt/κt

1 + 4Q2
t

, (C19)

ω′a = ωa −
4Qtg2

at/κt

1 + 4Q2
t

, (C20)

ω′v = ωv −
4Qtg2

vt/κt

1 + 4Q2
t

, (C21)

g′av =
2gvtgat/κt

1 + 4Q2
t
+ i(gav −

4Qtgvtgat/κt

1 + 4Q2
t
), (C22)

ϵd = −ı̇e
+iΔϕ, (C23)
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g′at = −
2gat/κt

1 + 4Q2
t
+ i

4Qtgat/κt

1 + 4Q2
t

, (C24)

g′vt = −
2gvt/κt

1 + 4Q2
t
+ i

4Qtgvt/κt

1 + 4Q2
t

, (C25)

where Qt = ωt/κt is the quality factor of the tip.
Solving Eqs. (C15) and (C16) for the Laplace transform of the

resonator field ⟨â(s)⟩ under vanishing initial conditions, we obtain

⟨â(s)⟩ =
(s − a22)

p(s)
G1(s,Δϕ) +

a12

p(s)
G2(s), (C26)

where p(s) = (s − a11)(s − a22) − a12a21, a11 = −κ′/2 − iωc, a22
= −γ′/2 − iω′v, and a12 = a21 = −g′av. The source terms are given
by G1(s,Δϕ) = g̃atF2(s) − ieiΔϕF1(s) and G2(s) = g̃vtF2(s) with
F1(s) = L[F1ϕ1(t)e−ı̇ωdt

] and F2(s) = L[F2ϕ2(t)e−ı̇ωet
] being

the Laplace transforms of the pulse sources. For equal pulses
[F1(s) = F2(s) = F(s)] and vanishing tip–dipole coupling (gvt ∼ 0),
Eq. (C26) reduces to Eq. (15) in the main text.

APPENDIX D: ANHARMONIC VIBRATIONAL
BLOCKADE
1. Exact finite-size calculations

The results in Figs. 5(b) and 5(c) were obtained by solving
the Lindblad quantum master equation in Appendix A for a small
collection of N molecules described by the stationary Hamiltonian

Ĥ = ωaâ†â +
N

∑
i=1
(ωvb̂†

i b̂i −U b̂†
i b̂†

i b̂ib̂i) + g
N

∑
i=1
(b̂iâ†

+ b̂†
i â), (D1)

where U = Δ21/2 gives the local anharmonic energy shift of
higher vibrational levels. The total Hamiltonian includes the time-
dependent driving term in Eq. (5), and for relaxation, we include
local vibrational relaxation and photon decay with the Lindblad dis-
sipators in Eqs. (A4) and (A2), respectively. The master equation is
integrated numerically for small N by projecting the density matrix
in the product basis ∣νi⟩∣nc⟩, where ∣νi⟩ is a local vibrational eigen-
state and ∣nc⟩ is a cavity Fock state. From the solution ρ̂(t), we obtain
the collective vibrational coherence ⟨B̂0⟩ = ∑i Tr[b̂iρ̂(t)]/

√
N in

Fig. 5(b) and other observables of interest.
To understand the degree of ground state depletion needed to

obtain a nonlinear phase shift ΔΦNL ∼ 0.1π, we solve the quantum
master equation for a single molecule subject to a 155 fs pulse with
strength F0 = 0.3κ and obtain the population of the lowest vibra-
tional levels. The results are shown in Fig. 7. The ground state needs
to be depleted by about 50% at the peak of the driving pulse to obtain
ΔΦNL/π ≈ 0.1. Despite this strong bleaching, the average photon
number ⟨â†â⟩ remains low because photons leak out faster than they
accumulate in the near-field (F0/κ < 1). No significant population
beyond ν = 3 is found. The system parameters used in Fig. 7 are the
same as in Fig. 5(b) (strong field response).

FIG. 7. Vibrational and Fock state population. (a) Evolution of the lowest cavity
Fock states subject to a strong Gaussian pulse (FWHM = 155 fs) centered at
600 fs. (b) Vibrational population for the same driving pulse. System parameters
are (γ/2π, κ/2π,

√
Ng, U) = (17, 519, 41.5, 20) cm−1 and F0/κ = 0.3.

2. Vibrational chirping model
From the quantum master equation with the local anharmonic

Hamiltonian in Eq. (D1), the equations of motion for the collective
coherence are given by

d
dt
⟨B̂0⟩ = − (γ/2 + iωv)⟨B̂0⟩ − i

√
Ng⟨â⟩ + i

2U
√

N

N

∑
j=1
⟨b̂†

j b̂†
j b̂j⟩, (D2)

where the qubic correlation results directly from the Kerr anhar-
monicity in the vibrational Hamiltonian. Solving for ⟨B̂0⟩ and ⟨â⟩
thus requires extending the evolution equations to include the
dynamics of ⟨b̂†

j b̂†
j b̂j⟩ and linked observables, which forms a trun-

cated hierarchy of coupled nonlinear equations that can be solved
with standard methods.87 Depending on the problem, the complex-
ity of solving the hierarchy of coupled equations could be as high
as numerically integrating the quantum master equation directly.
Therefore, approximate solutions can be valuable to gain physical
insights.

We can approximately close the hierarchy of equations at the
mean field level by assuming that that the states of the antenna (cav-
ity) field and the vibrational ensemble are given by coherent states of
the form
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∣ψant(t)⟩ = e∣α(t)∣
2/2 ∞
∑
nc=0

α(t)nc

√
nc!
∣nc⟩, (D3)

∣ψN(t)⟩ = e∣β(t)∣
2/2 ∞
∑
k=0

β(t)k
√

k!
∣k⟩0. (D4)

Therefore, ∣ψant(t)⟩ is an eigenstate of â with α being the eigenvalue
and ∣ψN(t)⟩ being an eigenstate of the collective operator B̂0 with
eigenvalue β. The discrete index k denotes the total excitation level
in the vibrational ensemble. Assuming only totally-symmetric con-
figurations, the collective state with k excitations in an ensemble of
N molecules is given by

∣k⟩0 =
1

Nk/2 ∑
ν1+⋅⋅⋅+νN=k

[
k!

ν1! ⋅ . . . ⋅ νN !
]

1/2
∣ν1, . . . , νN⟩, (D5)

where the summation runs over all the vibrational configurations
that are consistent with the global excitation level k.

Inserting the wavefunction ansatz from Eqs. (D3) and (D4) into
Eqs. (D2) and (6), we obtain the following closed system of coupled
nonlinear equations for the coherent state amplitudes:

d
dt
α = −(

κ
2
+ iωc) α − i

√
Ng β − iF̃d(t), (D6)

d
dt
β = −(

γ
2
+ i[ωv −

2U ∣β∣2

N
])β − i

√
Ng α (D7)

from which the quadratic chirp term emerges. Promoting these
scalar amplitudes to general mean field observables, i.e., α→ ⟨â⟩ and
β→ ⟨B̂0⟩, gives the vibrational chirping model in Eq. (19) discussed
in the main text.
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