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ABSTRACT: Scattering scanning near-field optical microscopy
(s-SNOM) provides spectroscopic imaging from molecular to
quantum materials with few nanometer deep subdiffraction limited
spatial resolution. However, in its conventional implementation s-
SNOM is slow to effectively acquire a series of spatio-spectral
images, especially with large fields of view. This problem is further
exacerbated for weak resonance contrast or when using light
sources with limited spectral irradiance. Indeed, the generally
limited signal-to-noise ratio prevents sampling a weak signal at the
Nyquist sampling rate. Here, we demonstrate how acquisition time
and sampling rate can be significantly reduced by using
compressed sampling, matrix completion, and adaptive random
sampling, while maintaining or even enhancing the physical or
chemical image content. We use fully sampled real data sets of molecular, biological, and quantum materials as ground-truth physical
data and show how deep under-sampling with a corresponding reduction of acquisition time by 1 order of magnitude or more retains
the core s-SNOM image information. We demonstrate that a sampling rate of up to 6× smaller than the Nyquist criterion can be
applied, which would provide a 30-fold reduction in the data required under typical experimental conditions. Our smart s-SNOM
approach is generally applicable and provides systematic full spatio-spectral s-SNOM imaging with a large field of view at high
spectral resolution and reduced acquisition time.
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Infrared vibrational scattering scanning near-field optical
microscopy (IR s-SNOM) provides nanoimaging with

intrinsic vibrational, phonon, and electronic resonance contrast
with chemical and material specificity at deep-subdiffraction
spatial resolution (≤20 nm).1−5 Recent advances in IR s-
SNOM enable nanoscopic chemical imaging of diverse
materials, ranging from biological to molecular and quantum
systems. The meso- and macroscopic behavior of these systems
is determined by interactions at the nanoscopic level and
therefore require imaging techniques with high spatial
resolution and large fields of view. Typical data sets for IR s-
SNOM chemical imaging include two spatial dimensions
across the sample surface and one spectral dimension, for
example, as obtained by scanning the reference arm mirror
position in nano Fourier-transform infrared spectroscopy
(nano-FTIR), see Figure 1A. Broadband IR light sources are
desired for measuring multiple vibrational modes but are often
limited by their low brilliance, which reduces the signal-to-
noise ratio (SNR). Laser-based IR spectroscopy has high
brilliance but is challenged by sample exposure when low
repetition rate and high pulse energy lasers are used.
Therefore, chemical nanoimaging of biological, molecular,
and quantum systems with large spatial and spectral resolution
over large fields of view has remained challenging because of
the associated large multidimensional data sets whose

achievable SNR limits the acquisition rate. Modifications of
s-SNOM to increase acquisition speed have been proposed6,7

but have not yet taken advantage of the large redundancy in s-
SNOM data sets. Previous work showed that compressed
sampling can reduce nano-FTIR acquisition time using spectral
sparsity.8 Further, compressed sensing has been adapted9 for
spatio-spectral nano-FTIR imaging and augmented by spatial
regularization. While compressed sampling and matrix
completion have been used intensively for hyperspectral
imaging,10−12 their full potential has not yet been exploited
for s-SNOM. Matrix completion13,14 relies on the hypothesis
that only a small number of chemical species, compositional
characteristics, or structural features are present in the sample,
which is in fact typically the case for most samples imaged with
s-SNOM.
In this work we address this problem of reducing the amount

of acquired data while maintaining physical relevance by using
prior knowledge and an adaptive sampling algorithm tailored
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for s-SNOM. First, we demonstrate a reduction in data
acquisition by using a combination of prior physical knowledge
about the light source, the spectral sparsity, and a limited
number of distinct chemical species. The analysis of the impact
of each hypothesis individually, and their interplay, leads to the
design of an effective reconstruction algorithm for full spatio-
spectral s-SNOM imaging from compressed measurements.
We show that a compression of up to 96.6% (1/30 sample)
compared to acquisition under conventional uncompressed
conditions can be achieved without sacrificing physically
meaningful information in the nano-FTIR images or spectra.
Further, we develop an adaptive algorithm for positioning the
reference arm mirror at each spatial position of the sample. We
note that random sampling is a universal strategy adapted for
compressed sampling and matrix completion.15,16 We propose
to estimate the normalized average envelope of the local
interferograms to use as a probability distribution to select the
random mirror positions. This approach acquires data in the
most relevant parts of the interferogram with high probability,
see Figure 1B. To study the achievable performance of this
new approach of smart s-SNOM, we use fully sampled real data
sets of biological, quantum, and molecular materials17 as
ground truth. A subsampled measurement is extracted from the
ground truth measurement using smart sampling, then a
reconstruction algorithm recovers the remaining not-sampled
data by using prior knowledge about the light source and the
sample.

■ METHODS

Compressed sampling (CS) and matrix completion (MC) are
well suited for s-SNOM to reduce the number of measure-
ments needed to have a large field of view at high spectral
resolution. In the following subsections, we motivate choices to
create reconstruction algorithms based on CS and MC and
describe an adaptive scan strategy for the reference arm mirror
position. Conventionally, the sample is raster scanned under an
atomic force microscope (AFM) tip to image a rectangular
area of the sample; the spatial points are distributed along a
regular discrete grid of evenly spaced points. At a given spatial
position of the tip, the reference arm mirror is scanned to
acquire an interferogram. One data point of the interferogram
corresponds to one mirror position, which corresponds to one
optical delay between reference and signal arms. In practice,
the mirror is translated with a constant speed and measure-
ments are periodically performed to get regularly spaced
delays.18 Here we propose to use only a small fraction of the
mirror positions that are standard in conventional s-SNOM
acquisition. In order to recover the missing data points, we
exploit prior knowledge of the sample and the light source. See
Supporting Information, “Experiment acquisition details”.

Compressed Sampling (CS). Infrared spectroscopy
resolves spectral peaks from, for example, molecular vibrations,
which are specific to the molecular identity and their local
chemical environment. Each spatial point of an s-SNOM
measurement contains a mixture of distinct chemical species
that, when spectroscopically measured, yield a combination of
vibrational spectra of multiple local chemical species. s-SNOM
spectra are usually composed of a few resonance peaks and are,
thus, in principle, sparse signals.
Unfortunately, the sparsity assumption is not always correct;

for instance, the free carrier response can contribute to a wide
spectral range. In those cases, only other prior knowledge, as
described in the following sections, can be used. The number
of mirror positions in FTIR spectroscopy can be reduced using
concepts of compressed sampling.8,9 Compressed sam-
pling19−21 is a well-established technique to efficiently acquire
and reconstruct a signal. Two main assumptions are required,
sparsity (here of the spectrum) and mathematical incoherence
of the sensing matrix.19 In our context, incoherence means that
every point of an interferogram is a different linear
combination of each frequency point of the corresponding
spectrum. Here, the interferogram and the spectrum are linked
by a Fourier transform. It is well-known in signal processing
that the Fourier transform associated with a random selection
of samples leads to an incoherent sensing matrix.22 Therefore,
in s-SNOM, all the conditions are met to use CS on the
spectral dimension. Moreover, spectral peaks can only be
detected if they are within the light source bandwidth. Hence,
the spectrum is reconstructed only inside the light source
bandwidth and set to zero outside. When the light source is a
laser, this can be used to greatly reduce the number of
necessary samples acquired.6 The spectral portion outside the
light source bandwidth does not affect the measurement and is
considered to be composed of zeros. A truncated Fourier
transform on the accessible part of the spectrum is used to
reduce the problem dimension and to increase computation
speed and compression factor.

Matrix Completion (MC). s-SNOM spectra are combina-
tions of a few distinct chemical vibrational spectra. Under mild
assumptions, this leads to a small rank measurement matrix

Figure 1. Smart s-SNOM schematic: (A) Light source laser L or
synchrotron S, beam splitter BS, scanning mirror M on reference arm.
Sample on scanning stage under the tip T, point detector mercury−
cadmium−telluride or MCT. Hyperspectral images can be acquired
by scanning the mirror and the sample. In the case of a 2D grid scan,
or of a 1D line scan of the sample, the final output is, respectively, a
3D or 2D hyperspectral image. If the sample is not moved, but only
the mirror is scanned, the final output is a 1D spectrum. (B) Diagram
of smart s-SNOM. Our contribution: smart sampling system, provides
a list of positions of the scanning mirrors for each sample point and
reconstruction algorithm, to estimate the value of the missing data
and, hence, recreates a fully sampled hyperspectral image X. At each
new spatial position of the sample, an intermediate reconstruction is
calculated in order to evaluate an averaged envelope X( ) of the
interferograms. X( ) is normalized and used as a random
distribution to select the mirror positions for the next sample position.
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when the number of chemical species in the sample is small
compared to the number of spatial measurement points. Under
a linear mixing assumption it can be shown that the rank of the
measurement matrix will be smaller than the number of
chemical species in the sample23,24 (see Supporting Informa-
tion, “Low rank assumption”). Matrix completion is used to
complete matrices with missing entries under the approximate
low rank assumption.13,14 Regular s-SNOM data can be
rearranged in a matrix form with interferograms in rows,
where each row corresponds to a given spatial position of the
tip. When only a few random positions of the mirror are
selected, the missing data in the matrix is suitable for recovery
as missing entries because the matrix is low rank. MC is not
sensitive to the complex spatial distribution of the chemical
species; therefore, it remains a useful tool, even for samples
with random uncorrelated spatial distributions of the chemical
species.
Adaptive Random Sampling. Redundancies in s-SNOM

data can be exploited to recover a full field of view and a
complete spectral image from fewer measurements. In
addition, we propose an adaptive selection of the most
appropriate sampling positions for the reference arm mirror at
the next tip position. Intuitively, the sampling should select
parts of the interferogram that convey the most variations.
Thus, we propose tuning the probability distribution of the
random sample selection as close as possible to the envelope of
the interferograms. s-SNOM samples can show a wide diversity

of interferogram envelopes, which emphasizes the necessity for
an adaptive strategy to select the best mirror positions to
acquire data. At the beginning of an acquisition, the only prior
knowledge available is the spectral bandwidth of the light
source and the sparsity of the spectrum. Therefore, for the first
sample spatial position, we use a uniform random distribution
to select the reference arm mirror positions where data will be
collected. The number of samples to be acquired can be
determined by using the Nyquist criterion and the sparsity
assumption. For the following spatial position, we have more
information from the previous measurement. Hence, we
propose tuning the random distribution used to select the
mirror positions so that it is as close as possible to the envelope
of the interferogram. We reconstruct all of the interferograms
at previous spatial positions and calculate their envelopes. We
use the average of these envelopes to generate the probability
distribution for spectral sampling at the next sample position.
The sampling rate is continually reduced throughout the
measurement such that the desired final compression factor is
achieved (more details can be found in Supporting
Information, “Parameter tuning”). Similar to MC, the perform-
ance gain due to our adaptive sampling strategy is sensitive to
the number of pure chemical species in the sample as well as to
the number of appearances of each chemical species. However,
the performance gain does not depend on the spatial
distribution of the chemical species.

Figure 2. Application of smart s-SNOM to different materials systems (biological, molecular, and quantum), different light sources (Laser, ALS
synchrotron), and different spatial scanning (single point, line, and 2D scan). Fully sampled data sets acquired experimentally (blue curves). Mirror
positions selected by our adaptive sampling strategy (red crosses). Reconstructed spectrum in amplitude/phase or |A(ν ̅)|/Φ(ν ̅) and real/imaginary
part or Re(A(ν ̅))/Im(A(ν)̅) (red and black dotted curves, respectively). For the PTFE sample, reconstruction from uniformly sampled
measurements without the use of adaptive sampling (green dotted curves). The reduction factor (R) is, respectively, 17, 30, 4, and 30. The
compression factor (CF) is, respectively, 1, 4, 1.6, and 6.5. The regularization parameter called Nuc is, respectively, 0, 5, 0.75, and 0.005. The
regularization parameter 1 is, respectively, 0, 10−6, 0.01, 4 × 10−5 (see Supporting Information, “Algorithm”).
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Experimentally, smart s-SNOM moves the scanning mirror
(see Figure 1) to only some specific positions dictated by the
adaptive sampling strategy. This kind of experiment is
emulated by using the adaptive sampling selection rules on
the data provided by a conventional s-SNOM experiment. The
fully sampled data set can then be used both as a ground truth
to calculate errors, like relative mean square error, or to
compare the peak positions of the reconstruction. In our
algorithm, we made the choice to minimize a criterion
enforcing fidelity to data using a quadratic norm with
penalization added to enforce the sparsity of the spectrum
and the low rank assumption. The criterion is convex and has
two parameters λ1 and λ* to tune how sparse and how low rank
the reconstruction should be, respectively. We then use a
generalized forward−backward algorithm25 to minimize this
criterion. A detailed description of the criterion and of the
algorithm is presented in the Supporting Information,
“Algorithm”. In the following we demonstrate how our strategy
performs on different samples and how well physically relevant
information is kept in the reconstructions.

■ RESULTS

s-SNOM imaging can be used on a broad class of samples (see
Figure 2), including biological, molecular, and quantum
materials. We tested our algorithms with a representative
member of each of these material types and with two different
light sources, including a laser and a synchrotron (Advanced
Light Source ALS). Light source properties affect the
interferogram shape (see Figure 2). Specifically, the synchro-
tron’s broad bandwidth leads to a sparser representation than
that of a laser. We quantify the compression with two different
metrics. The ratio between the number of acquired samples for
a fully sampled acquisition and for a smart s-SNOM acquisition
is called the reduction factor (R). The experimental data used
as ground truth in this paper are oversampled to ensure
Nyquist sampling above the highest frequency of the light
source. Furthermore, the mirror displacement range is scanned
to achieve a fixed spectral instrument resolution that is
narrower than the observed spectral features. Therefore, we
also give the ratio between minimally sampled acquisitions (at
Nyquist rate and smallest mirror motion range) and smart s-
SNOM sampling, which is called the compression factor (CF).
We emphasize that, at the experimental integration time per
sample, Nyquist sampling would greatly reduce the quality of
the spectrum; therefore, we use R as a fair ratio to be
highlighted. Laser-based broadband measurements (nano-
FTIR) and synchrotron IR nanospectroscopy (SINS) were
performed as previously described in ref 17 (see also
Supporting Information). We considered a range of sample
types and light sources for a robust interpretation of smart s-
SNOM reconstructions.
The first data set shown in Figure 2A is a synchrotron

radiation based measurement of 400 nm thick γ-globulin
referenced to Si, as described in ref 17. This measurement
highlights the difficulty of measuring multiple chemical
resonances with a low brilliance light source. The spectrum
of gamma-globulin shows the characteristic amide resonances
(I, II, and III) of a protein and are indicated in Figure 2A. Only
one spatial point is acquired; therefore, only sparsity of the
spectrum and light source bandwidth priors can be used in this
case. For this particular sample the sparsity of the spectrum in
the light source bandwidth does not enable a compression

factor over 1. Here, only the bandwidth prior has an effect on
the compression. However, the reduction factor R is 17.
The second data set shown in Figure 2B corresponds to a

laser based measurement of oriented PTFE referenced to gold.
We examine the real and imaginary part of nano-FTIR spectra
from PTFE, rather than the amplitude and phase, as the
oscillator strength is too strong for the typical approximation
between phase and imaginary spectra. The achieved
compression factor is 4, well below the minimum number of
the necessary points without the sparsity and small rank
assumptions. Therefore, MC and/or CS are useful to improve
the CF for PTFE samples. The separate effect of CS and MC is
demonstrated in Figure 3 using the PTFE data set. The
influence of R on the characterization of the two PTFE peaks is
illustrated in Figure 4.
The third data set is a laser based measurement in a

molecular electronic material of a metal carbonyl vibration
(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine ruthenium-
(II) carbonyl). This example demonstrates the difficulty of
accurately determining multiple spectral features of varying

Figure 3. Illustration of the effect of low rank assumption on the
reconstruction error. We use a PTFE hyperspectral array scan to
emulate an acquisition of different sized line scans. The position of the
spatial line scanned is indicated with a blue line on the image of panel
B). (A) Plots of relative mean square error as a function of the
number of spatial points for different reduction factors. The largest
quality improvement occurs between 1 and 6 spatial points, this is an
indication of the MC influence on the reconstruction quality. This can
be different for other samples with a higher diversity of chemical
species. (B) For each number of points used (10, 20, and 40 pixels),
different reduction factors are emulated: 10, 20, and 30 by reducing
more and more the number of positions used for the mirror. The
spatial evolution of the spectrum amplitude at νãs for ground truth is
plotted in blue and the reconstructions in red. At a given reduction
factor the visual quality of the reconstruction improves with the
number of spatial points sampled, this is also an indication of the MC
influence. (C) Illustration of the principle of matrix completion. Each
color red, green, and blue corresponds to one chemical species with a
specific spectrum. Those images are separable in space (x, y) and
frequency (ν) and are, therefore, considered rank one images. In the
case of a linear mixing model, the final hyperspectral image is a sum of
a few (rank one) of these images if the number of chemical species is
small in the sample. This explains the link between small rank
assumption on hyperspectral images and the number of chemical
species.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c00553
ACS Photonics 2020, 7, 3346−3352

3349

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c00553/suppl_file/ph0c00553_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c00553/suppl_file/ph0c00553_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c00553/suppl_file/ph0c00553_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c00553?fig=fig3&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c00553?ref=pdf


resonant strengths. The center resonance ω0 splits into ω− and
ω+, see Figure 2C, as the crystalinity of the nanocrystals are
increased. These resonances are close to each other and are of
similar strength, hence, increasing the difficulty of reducing the
number of measurements. Nonetheless, we achieve a reduction
factor R of 4. It is worth noting that the ground truth spatial
sampling was irregular, namely, only a subset of a regular
rectangular grid positions were used. Our algorithm does not
use the relative position of the spatial point, therefore any
spatial scanning pattern is compatible with smart s-SNOM.
The fourth data set is a FIR measurement of the silicon

dioxide (SiO2) phonon performed with synchrotron radiation.
The ground truth corresponds to a line scan of the SiO2
sample. A reduction factor of 30 was achieved on this sample
corresponding to a CF of 6.5. Therefore, having an adaptive
sampling strategy is attractive to collect data only at relevant
mirror positions, as shown in Figure 2D. AFM images of the
four data sets are shown in Figure S1, as well as the spatial
position of the tip, where s-SNOM interferograms were
acquired.
Adaptive Sampling Influence. The impact of the

adaptive sampling influence can be seen by comparing the
reconstructed spectrum from data selected with a uniform
random position for the reference mirror to the reconstructed
spectrum achieved from data selected with our adaptive
sampling strategy (see, respectively, green and black dotted
curves in Figure 2B). We see that adaptive sampling
dramatically improves the reconstruction quality. Figure 2
displays a broad range of interferogram shapes. In each case,
our adaptive strategy evaluates the average envelope and
therefore allows us to select mirror positions in the most
relevant parts of the interferograms. We see the selected mirror
positions plotted with red crosses in Figure 2D, showing that
most of the sampled positions are near the zero-path difference
(ZPD) region of the interferogram due to the distribution. In

this case, improved spectral resolution achieved by larger
mirror displacements does not appear to contribute new
information; thus, points closer to the ZPD region are
sufficient to reproduce the spectrum. In Figure 2A, the mirror
positions are drawn from a uniform distribution because only
one spatial point is used; therefore, the acquisition has to be
performed without any prior knowledge of the interferogram
shape.

Compressed Sampling Influence. In Figure 2, the γ-
globulin sample is probed at only one spatial position.
Therefore, only spectral compressed sampling could be used
to reduce the number of measurements. Unfortunately the
resulting spectrum is not sparse compared to the bandwidth of
the synchrotron. We observe that the compression factor is
one, but nonetheless, the reduction factor is 17. The
knowledge of the bandwidth allows, in this case, to work
with 17× less data. Figure 3A shows, for the PTFE sample, the
relative mean square error (RMSE) between reconstruction
and ground truth for four different compression factors (1, 10,
20, and 30). The RMSE for only one spatial point are
0.019,0.197, 0.440, and 0.794, respectively. These errors are
obtained using optimal parameter settings 0, 0.1, 0.1, 0.1 for
the 1 parameter and 0, 0, 0, and 0 for the nuclear parameter,
respectively (see Supporting Information, “Algorithm”). We
notice that the nuclear parameter is always 0, indicating the
fact that MC is not useful when only one spatial point is
probed. For comparison, we perform a reconstruction with the
1 parameter also set to 0 to see the effect of the 1 norm on the
reconstruction of the resulting RMSE of 0.0185, 1.42, 1.53, and
1.6, respectively. We notice that the RMSE for compression
factors of 10, 20, and 30 is greatly reduced using the 1 norm
(by 70% in average). As a result, we conclude that compressed
sensing improves the performance for the PTFE sample, in
agreement with similar effects observed in refs 8 and 9.

Matrix Completion Influence. The effect of matrix
completion depends on the number of spatial points acquired.
If there are fewer spatial points than the number of pure
chemical mixtures in the sample, matrix completion becomes
irrelevant. To show how MC is used in our reconstruction, we
study the effect of the number of spatial points on the quality
of the reconstruction of the PTFE sample. The experiment
consists of emulating line scan experiments of different sizes
and different compression ratios. The curves displayed in
Figure 3A show that the relative mean square error (RMSE) of
the reconstruction compared to the ground truth, decrease
with the number of spatial points sampled. Moreover, we see
that MC enables a higher CF compared to CS alone. In Figure
3B, the reconstruction of a 1D spatial section is shown for
different number of spatial points and different reduction
factor. There is a clear relation between R, the number of
spatial points and the quality of the reconstruction. This shows
the effectiveness of MC on the PTFE sample. We also observe
that only a limited number of spatial points is needed to fully
use MC (around six spatial points for PTFE). This is an
indication that the number of chemical species is indeed small
in this sample (see Figure 3C).

Physical Relevance of Reconstructions. In some
applications users are only interested in the characteristics of
the spectral peaks. In the PTFE example, there are two peaks,
corresponding to the symmetric and antisymmetric modes that
convey the physically relevant information. They are
characterized by their location at ν1̃ = 1168 cm−1 and ν2̃ =
1241 cm−1, full width at half-maximum, amplitude, and phase.

Figure 4. Extraction of physically relevant information from
resonance peaks at different reduction factors. (A) Characterization
of the two spectral peaks of the PTFE sample located at ν1 = 1168
cm−1 and ν2 = 1241 cm−1). Each stack corresponds to three images
obtained from reconstruction at different reduction factors (from top
to bottom, respectively, 1, 10, and 30). Each peak is characterized by
its estimated position ν′ and full width at half-maximum FWHM. (B)
Plot of the relative mean square error between reconstruction and
ground truth in red. Plot of the localization of the two peaks in blue as
a function of the compression factor (top axis) and to the reduction
factor (bottom axis). The standard deviation of the peak localization
increases with compression factor, leading to potential physical
misinterpretation of the reconstruction for high reduction or
compression factors.
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Figure 4A illustrates the capacity to extract this information
from smart s-SNOM data at different reduction factors. Color
bars of each image correspond to an estimate of one of these
parameters, each pixel corresponds to a spatial position of the
sample. Ground truth value of the parameters are shown in the
top images of each stack, where R = 1, and are compared with
the R = 10 and 30 cases. In Figure 4B, an estimation of the
peaks positions appears to be unbiased for a reduction factor
up to 100; however, the standard deviation increases with
reduction factor (see error bars of blue curves). A good
estimation of the peak’s position, width, and relative amplitude
can be achieved for R up to 30. We also observe a denoising
effect of our algorithm, where the sparsity assumption and the
low rank assumption used in our algorithm allow us to reject a
significant part of the noise contained in the reconstruction.
This is explained by the fact that the noise component of the
data is not sparse in the Fourier domain and is not low rank.

■ DISCUSSION
While signal processing for hyper-spectral imaging is a broad
field, we presented a focused development of choices to create
a smart s-SNOM approach taking into account its physical
properties. In this section, we discuss the particular choices
made and avoided as well as the limitations of the technique.
CS for Spatial Dimension. Similar to the temporal or

spectral dimension, spatial dimensions carry redundancies
because samples are composed of finite types of molecules that
are typically clustered or arranged in domains. The wavelet
transform of such samples is known to be sparse.26

Additionaly, the 2D curvelet transform has been proven to
be sparse for images that are piece-wise smooth with smooth
boundaries.27 This could be used to reduce the number of
spatial positions of the tip using CS. As an example, CS has
been used in AFM to increase acquisition speed.28 CS along
the spatial dimensions can be combined with CS in the spectral
dimension and would fall in a family called Kronecker CS.29 In
the case of a sample containing a spatially isolated chemical
species, the Wavelet domain would no longer yield a sparse
image and therefore would not comply with CS requirements.
It is arguable whether this would be an interesting feature to be
determined and hence whether the wavelet domain sparsity
should be used or not. Moreover, as a practical note,
performing this additional step slows down the reconstruction
because at each iteration one needs to perform a spatial
wavelet transform for each mirror position used. Given the
small compression potential, the strong hypothesis on the
sample and the added algorithmic cost, we decided not to
implement this approach at this time.
Scanning. We note that mirror scanning stages have

limitations not included in our model. Indeed, speed and
precision of the mirror and tip motion are linked to the
trajectory used. Lissajous curves are a good candidate for
scanning strategy.12 Our adaptive selection of the mirror
positions would need to be modified to take these limitations
into account. Moreover, a multipass strategy could be used to
improve the selection of the mirror position. Nonetheless, our
contribution clearly demonstrates the potential of using an
adaptive strategy to reduce s-SNOM acquisition time.
Introducing scanning limitations in our model could lead to
faster implementation of smart s-SNOM.
Algorithm. If the rank was known in advance, Non-

Negative Matrix Factorization (NMF)30 could be applied. One
can argue that an upper bound of the rank can be derived.

Another disadvantage of NMF is that the problem becomes
non convex, therefore we decided not to use NMF.
Alternatively, we chose to minimize a convex criterion with a
generalized forward−backward algorithm for its simplicity, its
speed, and its flexibility to add and try multiple penalization
terms. We chose to use 1 norm and * nuclear norm to enforce
the sparsity of the reconstructed spectra and to reduce the rank
of the reconstruction, respectively. Notwithstanding, one could
think about many other penalization functions. For instance,
we tried an 1,2 penalization, but the effect on the
reconstruction quality is smaller than the two penalization
functions we use. Adding a penalization function also increases
the number of parameters to tune; therefore, we tried to
minimize the number of penalization functions. We still have
two parameters to tune in our criterion, see Supporting
Information, “Parameters tuning” for more information. An
automatic tuning strategy like cross validation31,32 could be
tested.
A key aspect of smart s-SNOM is that it decreases

acquisition time without sacrificing meaningful information.
This might seem counterintuitive because of the potential
impact on SNR of the reduction in total integration time.
However, the lost integration time from missing data points is
offset by both the reconstruction and the denoising effects. In
fact, while conventional sampling is inefficient with the data
collection, as prior knowledge is not used to inform sampling,
smart s-SNOM reconstruction makes use of the prior
knowledge of the object observed to reject noise and to
recover missing acquisitions information.

■ PERSPECTIVE AND SUMMARY
We propose a strategy to compress s-SNOM measurements
and therefore greatly reduce acquisition time. To achieve that,
we reduce the number of mirror positions needed at each
location of the sample by exploiting redundancies in the s-
SNOM data set. Known prior knowledge, like bandwidth of
the light source, spectral sparsity, and the limited number of
distinct chemical species, is used to reduce the necessary
measurements. By using the same prior knowledge in our
adaptive selection of the sampled mirror positions, we greatly
improve the performance of s-SNOM. Smart s-SNOM opens
the way to applications where a wide field of view and a good
spectral resolution are both required apart from the nano-
metric resolution.
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