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ABSTRACT: Scattering scanning neald optical microscopy Smart s-SNOM Matrix completion
(sSNOM) provides spectroscopic imaging from molecular to + Compressed sampling
guantum materials with few nanometer deep sattibn limited Adaptive sampling

spatial resolution. However, in its conventional implemestation

SNOM is slow to esctively acquire a series of spatio-spectrgl /_\‘\
images, especially with larglels of view. This problem is furthg‘i\"
exacerbated for weak resonance contrast or when using
sources with limited spectral irradiance. Indeed, the genera!%/ ¢
limited signal-to-noise ratio prevents sampling a weak signal at the .
Nyquist sampling rate. Here, we demonstrate how acquisition ti /

and sampling rate can be sigantly reduced by using ~ g
compressed sampling, matrix completion, and adaptive randdm

sampling, while maintaining or even enhancing the physical or

chemical image content. We use fully sampled real data sets of molecular, biological, and quantum materials as ground-truth phy
data and show how deep under-sampling with a corresponding reduction of acquisition time by 1 order of magnitude or more retai
the coresSNOM image information. We demonstrate that a sampling rate okugntallér than the Nyquist criterion can be

applied, which would provide a 30-fold reduction in the data required under typical experimental conditions SI@NMmart
approach is generally applicable and provides systematic full spatis&gedttamaging with a largeld of view at high

spectral resolution and reduced acquisition time.

KEYWORDS:s-SNOM, compressed sensing, matrix completion, adaptive sampling, dthoising, near

z

z (optical delay)

I nfrared vibrational scattering scanning eédroptical achievable SNR limits the acquisition rate. REthns of
microscopy (IRSSNOM) provides nanoimaging with SSNOM to increase acquisition speed have been pfdposed
intrinsic vibrational, phonon, and electronic resonance contrdstt have not yet taken advantage of the large redundancy in
with chemical and material speity at deep-subdaction SNOM data sets. Previous work showed that compressed
spatial resolution @0 nm)*®° Recent advances in R sampling can reduce nano-FTIR acquisition time using spectral
SNOM enable nanoscopicentfical imaging of diverse sparsity.Further, compressed sensing has been adapted
materials, ranging from biological to molecular and quantufipatio-spectral nano-FTIR imaging and augmented by spatial
systems. The meso- and macroscopic behavior of these syst@@glarization. While corepsed sampling and matrix

is determined by interactions at the nanoscopic level aff@mpletion have been used intensively for hyperspectral
therefore require imaging techniques with high spatidnagind,>* their full potential has not yet been exploited
resolution and largelds of view. Typical data sets fosIR ~ for SSNOM. Matrix completioi™” relies on the hypothesis
SNOM chemical imaging include two spatial dimensiondat only a _small number of chemical species, cpmposmonal
across the sample surface and one spectral dimension, gracteristics, or'structural features are present in the sample,
example, as obtained by scanning the reference arm mir ich is in fact typically the case for most samples imaged with

position in nano Fourier-transform infrared spectroscop? NOM. : .
(nano-FTIR), se€igure A. Broadband IR light sources are In this work we address this problem of reducing the amount

desired for measuring multiple vibrational modes but are Oft&ﬁ_acquired data while maintair_ling physig:al releva_lnce by_ using
limited by their low brilliance, which reduces the signal—tcfErlor knowledge and an adaptive sampling algorithm tailored

noise ratio (SNR). Laser-based IR spectroscopy has high
brilliance but is challenged by sample exposure when Idgvgceived: April 6, 2020 (Piétonics
repetition rate and high pulse energy lasers are uset!blished:November 12, 2020
Therefore, chemical nanoimaging of biological, molecular,
and quantum systems with large spatial and spectral resolution
over large elds of view has remained challenging because of
the associated large multidimensional data sets whose
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METHODS

3D
y ‘ ZD Compressed sampling (CS) and matrix completion (MC) are
=7 i * well suited fosSNOM to reduce the number of measure-
Mw _9 Data ments needed to have a largkl of view at high spectral
——ty resolution. In the following subsections, we motivate choices to
//\ create reconstruction algorithms based on CS and MC and
describe an adaptive scan strategy for the reference arm mirror
Command l position. Conventionally, the sample is raster scanned under an
IH,:;E;;gSigﬁf;L atomic force microscope (AFM) tip to image a rectangular
area of the sample; the spatial points are distributed along a
r JQW M\« M 'eﬁgj:lft‘;ﬁ” regular discrete grid of evenly spaced points. At a given spatial
“avsiem Wm """"" A T - position of the tip, the reference arm mirror is scanned to
X HX)  HX) P acquire an interferogram. One data point of the interferogram
mmmml corresponds to one mirror position, which corresponds to one
SCANNING : optical delay between reference and signal arms. In practice,
SRE Svsrew i the mirror is translated with a constant speed and measure-
ments are periodically performed to get regularly spaced
delays® Here we propose to use only a small fraction of the

synchrotron S, beam splitter BS, scanning mirror M on reference arm. L . .
Sample on scanning stage under the tip T, point detector Biercury. rrro_r _p_OSItlons that are standard in c_:or}venttBBNOI\_/I
cquisition. In order to recover the missing data points, we

cadmiurStelluride or MCT. Hyperspectral images can be acquire(?1 o .
by scanning the mirror and the sample. In the case of a 2D grid sc&XPI0it prior knowledge of the sample and the light source. See

or of a 1D line scan of the sample, tha output is, respectively, a Supporting InformatiofiExperiment acquisition details

3D or 2D hyperspectral image. If the sample is not moved, but only Compressed Sampling (CS).Infrared spectroscopy

the mirror is scanned, theal output is a 1D spectrum. (B) Diagram resolves spectral peaks from, for example, molecular vibrations,
of smarsSNOM. Our contribution: smart sampling system, providesvhich are sped to the molecular identity and their local

a list of positions of the scanning mirrors for each sample point aRthemical environment. Each spatial point of$NOM
reconstruction algorithm, to estimate the value of the missing dgfgaasurement contains a mixture of distinct chemical species

and, hence, recreates a fully sampled hyperspectra.ifiagach . - . e
new spatial position of the sample, an intermediate reconstructionti t, when spectroscopically measured, yield a combination of

calculated in order to evaluate an averaged envélpef the vibrational spectra of multiple local chemical spE8kEOM

. - ) spectra are usually composed of a few resonance peaks and are,

interferograms./ (X) is normalized and used as a random thus, in principle, sparse signals

distribution to select the mirror positions for the next sample position. Ur;fortunately ,the sparsity assijmption is not always correct;
for instance, the free carrier response can contribute to a wide
spectral range. In those cases, only other prior knowledge, as

for SSNOM. First. we demonstrate a reduction in datadescribed in the following sections, can be used. The number

acquisition by using a combination of prior physical knowled é nméremtrspoos;t'%gs{,:grzlszjpigtrfﬁsér?&fna;rgsesreegugg?nl_jsmg

about the light source, the spectral sparsity, and a I|.m|te<% gwé)21 is a well-established technique toiently acquire

number of d|st|nct c_her_nl_cal SPpecies. Th_e _anaIyS|s of the imp [(]j reconstruct a signal. Two main assumptions are required

of each hypothesis individually, and their interplay, leads to t Sarsity (here of the spectrum) and mathematical incoherence

deS|gtn lofsal\rlloel\;tlye re.con?tructlon algorlthrg for full Spat'o'tof the sensing matfixin our context, incoherence means that
spectrals Imaging from Compressed measuremen 'very point of an interferogram is aedént linear

We show that a compression of up to 96.6% (1/30 sample)y pination of each frequency point of the corresponding

compared to acquisition under conventional uncompressee ym. Here, the interferogram and the spectrum are linked
conditions can be achieved without saog physically v 5 Fourier transform. It is well-known in signal processing
meaningful information in the nano-FTIR images or Spectrgya; the Fourier transform associated with a random selection
Further, we develop an adaptive algorithm for positioning thg samples leads to an incoherent sensing Fhatiarefore,
reference arm mirror at each spatial position of the sample. MesSNOM, all the conditions are met to use CS on the
note that random s.ampling is a.universal strategy adapted i‘}?fectral dimension. Moreover, spectral peaks can only be
compressed sampling and matrix compfefidive propose  detected if they are within the light source bandwidth. Hence,
to estimate the normalized average envelope of the 10ggk spectrum is reconstructed only inside the light source
interferograms to use as a probability distribution to select thyndwidth and set to zero outside. When the light source is a
random mirror positions. This approach acquires data in thgser, this can be used to greatly reduce the number of
most relevant parts of the interferogram with high probabilithecessary samples acquifte spectral portion outside the
seeFigure B. To study the achievable performance of thigight source bandwidth does nact the measurement and is
new approach of sma8NOM, we use fully sampled real dataconsidered to be composed of zeros. A truncated Fourier
sets of biological, quantum, and molecular mafedals transform on the accessible part of the spectrum is used to
ground truth. A subsampled measurement is extracted from tieeluce the problem dimension and to increase computation
ground truth measurement using smart sampling, then speed and compression factor.

reconstruction algorithm recovers the remaining not-sampledMatrix Completion (MC). sSNOM spectra are combina-
data by using prior knowledge about the light source and thiens of a few distinct chemical vibrational spectra. Under mild
sample. assumptions, this leads to a small rank measurement matrix

smart
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Figure 2.Application of smagSNOM to dierent materials systems (biological, molecular, and quantareptdight sources (Laser, ALS
synchrotron), and dérent spatial scanning (single point, line, and 2D scan). Fully sampled data sets acquired experimentally (blue curves). Mirro
positions selected by our adaptive sampling strategy (red crosses). Reconstructed spectrum in ampl|&gdd/phasend real/imaginary

part or Ref\( ))/Im( A( )) (red and black dotted curves, respectively). For the PTFE sample, reconstruction from uniformly sampled
measurements without the use of adaptive sampling (green dotted curves). The reducBprisfagspdctively, 17, 30, 4, and 30. The
compression factor (CF) is, respectively, 1, 4, 1.6, and 6.5. The regularization parameter called Nuc is, respectively, 0, 5, 0.75, and 0.005.
regularization parametgis, respectively, 0,°800.01, 4x 10°® (seeSupporting InformatiofAlgorithri).

when the number of chemical species in the sample is sntlinterferogram envelopes, which emphasizes the necessity for
compared to the number of spatial measurement points. Undem adaptive strategy to select the best mirror positions to
a linear mixing assumption it can be shown that the rank of tequire data. At the beginning of an acquisition, the only prior
measurement matrix will be smaller than the number dnowledge available is the spectral bandwidth of the light
chemical species in the safiffe(seeSupporting Informa-  source and the sparsity of the spectrum. Therefore, frstthe
tion, “Low rank assumptign Matrix completion is used to  sample spatial position, we use a uniform random distribution
complete matrices \_’VthAmISS'”g entries under the approximagselect the reference arm mirror positions where data will be
low rank assumptléﬁ._ RegularsSNOM data can be cgjiected. The number of samples to be acquired can be
rearranged in a matrix form with .|nterferograms_|_n rOWSjetermined by using the Nyquist criterion and the sparsity
where each row corresponds to a given spatial position of theg,mption. For the following spatial position, we have more
tip. When only a few random positions of the mirror ar€o mation from the previous measurement. Hence, we
selected, the missing data in the matrix is suitable for recov %pose tuning the random distribution used to select the

as missing entries because the matrix is low rank. MC is }rror positions so that it is as close as possible to the envelope

sensitive to the complex spatial distribution of the chemic : .
species; therefore, it remains a useful tool, even for samp$ ghe interferogram. We reconstruct all of the interferograms

with random uncorrelated spatial distributions of the chemicgf Previous spatial positions and calculate their envelopes. We
species. use the average of these envelopes to generate the probability

Adaptive Random Sampling. Redundancies BSNOM distribution for spectral sampling at the next sample position.
data can be exploited to recover a il of view and a The sampling rate is continuqlly reduced t.hroughout_ the
complete spectral image from fewer measurements. fEasurement such that_the desingad compression fac.tor is
addition, we propose an adaptive selection of the modchieved (more details can be foundSimporting
appropriate sampling positions for the reference arm mirror &formation;Parameter tunifg Similar to MC, the perform-
the next tip position. Intuitively, the sampling should sele@nce gain due to our adaptive sampling strategy is sensitive to
parts of the interferogram that convey the most variationthe number of pure chemical species in the sample as well as to
Thus, we propose tuning the probability distribution of théhe number of appearances of each chemical species. However,
random sample selection as close as possible to the envelogb®f performance gain does not depend on the spatial
the interferogramsSNOM samples can show a wide diversitydistribution of the chemical species.
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Experimentally, sm&sBNOM moves the scanning mirror factor over 1. Here, only the bandwidth prior haseat en
(seeFigure ) to only some sped positions dictated by the the compression. However, the reduction fRd®d7.
adaptive sampling strategy. This kind of experiment is The second data set showrFigure B corresponds to a
emulated by using the adaptive sampling selection rules kaser based measurement of oriented PTFE referenced to gold.
the data provided by a conventiaBINOM experiment. The  We examine the real and imaginary part of nano-FTIR spectra
fully sampled data set can then be used both as a ground trfiithm PTFE, rather than the amplitude and phase, as the
to calculate errors, like relative mean square error, or tcillator strength is too strong for the typical approximation
compare the peak positions of the reconstruction. In ousetween phase and imagynapectra. The achieved
algorithm, we made the choice to minimize a criteriotompression factor is 4, well below the minimum number of
enforcing delity to data using a quadratic norm with the necessary points without the sparsity and small rank
penalization added to enforce the sparsity of the spectrugdsumptions. Therefore, MC and/or CS are useful to improve
and the low rank assumption. The criterion is convex and hgfe CF for PTFE samples. The separatet ef CS and MC is
two parameters and - to tune how sparse and how low rank gemonstrated irFigure 3using the PTFE data set. The
the reconstruction should be, respectively. We then usejf yence oRon the characterization of the two PTFE peaks is
generalized forw&backward algoritfmto minimize this illustrated irFigure 4
criterion. A detailed description of the criterion and of the The third data set is a laser based measurement in a
algorithm is presented in tHeupporting Information,  mglecular electronic material of a metal carbonyl vibration
“Algorithni. In the following we demonstrate how our Strategy2,3,7,8,12,13,17,18-octaethyl;23—|-porphine ruthenium-
performs on derent samples and how well physically releva ) carbonyl). This example demonstrates theudty of

information is kept in the reconstructions. accurately determining multiple spectral features of varying

RESULTS

s$SNOM imaging can be used on a broad class of samples (see
Figure 2, including biological, molecular, and quantum
materials. We tested our algorithms with a representative
member of each of these material types and with ®verdi

light sources, including a laser and a synchrotron (Advanced
Light Source ALS). Light source propertiesctathe
interferogram shape (degure . Specically, the synchro-

tron's broad bandwidth leads to a sparser representation than
that of a laser. We quantify the compression with tere i
metrics. The ratio between the number of acquired samples for
a fully sampled acquisition and for a ss8MOM acquisition

is called the reduction fact®).(The experimental data used

as ground truth in this paper are oversampled to ensure
Nyquist sampling above the highest frequency of the light
source. Furthermore, the mirror displacement range is scanned
to achieve axed spectral instrument resolution that is
narrower than the observed spectral features. Therefore, we

also give the ratio between mlnlmally.sampled acquisitions ﬁbure 3.lllustration of the eect of low rank assumption on the
Nyquist rate and smallest mirror motion range) and smart \oconstruction error. We use a PTFE hyperspectral array scan to
SNOM sampling, which is called the compression factor (CF3mulate an acquisition ofetient sized line scans. The position of the
We emphasize that, at the experimental integration time pgfatial line scanned is indicated with a blue line on the image of panel
sample, Nyquist sampling would greatly reduce the quality Bf. (A) Plots of relative mean square error as a function of the
the spectrum; therefore, we Weas a fair ratio to be number of spatial points for elient reduction factors. The largest
highlighted. Laser-based broadband measurements (nafigality improvement occurs between 1 and 6 spatial points, this is an
FTIR) and synchrotron IR nanospectroscopy (SINS) wer dlcatlon of the MC iruence on thga reconstruction qugllty. This can
performed as previously described inlief(see also e dierent for other samples with a higher diversity of chemical

. . . species. (B) For each number of points used (10, 20, and 40 pixels),
Supporting InformatignWe considered a range of sample di erent reduction factors are emulated: 10, 20, and 30 by reducing

types and light sources for a robust interpretation ofssmart 1,56 and more the number of positions used for the mirror. The
SNOM reconstructions. spatial evolution of the spectrum amplitudg, &dr ground truth is

The rst data set shown iRigure A is a synchrotron piotted in blue and the reconstructions in red. At a given reduction
radiation based measurement of 400 nm thgikbulin factor the visual quality of the reconstruction improves with the
referenced to Si, as described inlvefThis measurement number of spatial points sampled, this is also an indication of the MC
highlights the diculty of measuring multiple chemical in uence. (C) lllustration of the principle of matrix completion. Each
resonances with a low brilliance light source. The spectrufflor red, green, and blue corresponds to one chemical species with a
of gamma-globulin shows the characteristic amide resonan?%%c'c Spec“”?' Thoae |Tages are dsepgrabli in spgcend n th
(1, 11, and IIl) of a protein and are indicatedrigure A. Only requency () and are, therefore, considered rank one images. In the

. S L . case of a linear mixing model, th&l hyperspectral image is a sum of
one spatial point is acquired; therefore, only sparsity of thece,y (rank one) of these images if the number of chemical species is

spectrum and light source bandwidth priors can be used in th§§ajl in the sample. This explains the link between small rank
case. For this particular sample the sparsity of the spectrumaumption on hyperspectral images and the number of chemical
the light source bandwidth does not enable a compressiepecies.
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this case, improved spectral resolution achieved by larger
mirror displacements does not appear to contribute new
information; thus, points closer to the ZPD region are
su cient to reproduce the spectrumEigure A, the mirror
positions are drawn from a uniform distribution because only
one spatial point is used; therefore, the acquisition has to be
performed without any prior knowledge of the interferogram
shape.
Compressed Sampling Inuence. In Figure 2 the -
globulin sample is probed at only one spatial position.
Therefore, only spectral compressed sampling could be used
to reduce the number of measurements. Unfortunately the
resulting spectrum is not sparse compared to the bandwidth of
the synchrotron. We observe that the compression factor is
Figure 4. Extraction of physically relevant information from one, but nonetheless, theduetion factor is 17. The
resonance peaks ataient reduction factors. (A) Characterization knowledge of the bandwidth allows, in this case, to work
of the two spectral peaks of the PTFE sample located 4168 with 1% less datdzigure & shows, for the PTFE sample, the
cnPtand , = 1241 crit!). Each stack corresponds to three imagesrelative mean square error (RMSE) between reconstruction
obtained from reconstruction atetent reduction factors (from top  ang ground truth for four dirent compression factors (1, 10,
.tf bottt_omi rgspeq:_lvely, é’flﬁ)' "’.‘3313?)H Elf""Ch peak |s':c\?va|_r|?;|:tc?g)zed2@f and 30). The RMSE for only one spatial point are
IS estimate osition ana tull wi at nal-maximum . :
Plot of the reFI)ative mean square error between reconstruction aQ' 1.9’0'197.’ 0'440.’ and 0.794, respe(;tlvely. These errors are
tained using optimal parameter settings 0, 0.1, 0.1, 0.1 for

ground truth in red. Plot of the localization of the two peaks in blue % .
a function of the compression factor (top axis) and to the reductiol'® 1 Parameter and 0, 0, 0, and 0 for the nuclear parameter,

factor (bottom axis). The standard deviation of the peak localizatidigspectively (seBupporting InformatiorfAlgorithri). We
increases with compression factor, leading to potential physidwtice that the nuclear parameter is always 0, indicating the
misinterpretation of the reconstruction for high reduction orfact that MC is not useful when only one spatial point is
compression factors. probed. For comparison, we perform a reconstruction with the
{ parameter also set to O to see tleeteof the; norm on the
resonant strengths. The center resonaysmlits into g and reconstruction of the resulting RMSE of 0.0185, 1.42, 1.53, and
. SeeFigure £, as the crystalinity of the nanocrystals arel.6, respectively. We notice that the RMSE for compression
increased. These resonances are close to each other and afectdrs of 10, 20, and 30 is greatly reduced usirjghdren
similar strength, hence, increasing theutty of reducing the  (by 70% in average). As a result, we conclude that compressed
number of measurements. Nonetheless, we achieve a reducsiensing improves the performance for the PTFE sample, in
factorR of 4. It is worth noting that the ground truth spatial agreement with similarezts observed in refsnd9.
sampling was irregular, namely, only a subset of a regulaMatrix Completion In uence. The eect of matrix
rectangular grid positions were used. Our algorithm does ncampletion depends on the number of spatial points acquired.
use the relative position of the spatial point, therefore arf there are fewer spatial points than the number of pure
spatial scanning pattern is compatible with siBAIOM. chemical mixtures in the sample, matrix completion becomes
The fourth data set is a FIR measurement of the silicomrelevant. To show how MC is used in our reconstruction, we
dioxide (Si@ phonon performed with synchrotron radiation. study the eect of the number of spatial points on the quality
The ground truth corresponds to a line scan of the SiOof the reconstruction of the PTFE sample. The experiment
sample. A reduction factor of 30 was achieved on this samptmsists of emulating line scan experimentsevérmnl sizes
corresponding to a CF of 6.5. Therefore, having an adaptised dierent compression ratios. The curves displayed in
sampling strategy is attractive to collect data only at relevdfigure & show that the relative mean square error (RMSE) of
mirror positions, as shownRigure B. AFM images of the the reconstruction compared to the ground truth, decrease
four data sets are shownFigure Slas well as the spatial with the number of spatial points sampled. Moreover, we see
position of the tip, whereSNOM interferograms were that MC enables a higher CF compared to CS aldfigLhe
acquired. 3B, the reconstruction of a 1D spatial section is shown for
Adaptive Sampling In uence. The impact of the di erent number of spatial points andedint reduction
adaptive sampling irence can be seen by comparing thefactor. There is a clear relation betwRethe number of
reconstructed spectrum from data selected with a uniforspatial points and the quality of the reconstruction. This shows
random position for the reference mirror to the reconstructethe e ectiveness of MC on the PTFE sample. We also observe
spectrum achieved from data selected with our adaptitieat only a limited number of spatial points is needed to fully
sampling strategy (see, respectively, green and black dotbsg¢ MC (around six spatial points for PTFE). This is an
curves inFigure B). We see that adaptive sampling indication that the number of chemical species is indeed small
dramatically improves the reconstruction quéligyre 2 in this sample (sdggure €).
displays a broad range of interferogram shapes. In each casBhysical Relevance of Reconstructions.In some
our adaptive strategy evaluates the average envelope apglications users are only interested in the characteristics of
therefore allows us to select mirror positions in the moghe spectral peaks. In the PTFE example, there are two peaks,
relevant parts of the interferograms. We see the selected mirorresponding to the symmetric and antisymmetric modes that
positions plotted with red crosse&igure D, showing that  convey the physically relevant information. They are
most of the sampled positions are near the zero-patnde characterized by their location at 1168 cmt and , =
(ZPD) region of the interferogram due to the distribution. In1241 cm?, full width at half-maximum, amplitude, and phase.
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Figure A illustrates the capacity to extract this informationAnother disadvantage of NMF is that the problem becomes
from smarsSNOM data at derent reduction factors. Color non convex, therefore we decided not to use NMF.
bars of each image correspond to an estimate of one of theédeernatively, we chose to minimize a convex criterion with a
parameters, each pixel corresponds to a spatial position of temeralized forw&tackward algorithm for its simplicity, its
sample. Ground truth value of the parameters are shown in thgeed, and itsexibility to add and try multiple penalization
top images of each stack, wikerel, and are compared with terms. We chose to usaorm ands nuclear norm to enforce
the R= 10 and 30 cases. figure 8, an estimation of the the sparsity of the reconstructed spectra and to reduce the rank
peaks positions appears to be unbiased for a reduction faaéthe reconstruction, respectively. Notwithstanding, one could
up to 100; however, the standard deviation increases withink about many other penalization functions. For instance,
reduction factor (see error bars of blue curves). A googie tried an S, penalization, but the ect on the
estimation of the pealposition, width, and relative amplitude reconstruction quality is smaller than the two penalization
can be achieved fBrup to 30. We also observe a denoisingsynctions we use. Adding a penalization function also increases
e ect of our algorithm, where the sparsity assumption and thge number of parameters to tune; therefore, we tried to
low rank assumption used in our algorithm allow us to reject@inimize the number of penalization functions. We still have
signicant part of the noise contained in the reconstructionyyq parameters to tune in our criterion, Seeporting
This is explained by the fact that the noise component of theformation,“Parameters tunihdgor more information. An
data is not sparse in the Fourier domain and is not low rank;tomatic tuning strategy like cross validatfonould be
tested.
DISCUSSION A key aspect of smastSNOM is that it decreases
While signal processing for hyper-spectral imaging is a bragatuisition time without sacing meaningful information.
eld, we presented a focused development of choices to crebités might seem counterintuitive because of the potential
a smartsSNOM approach taking into account its physicaimpact on SNR of the reduction in total integration time.
properties. In this section, we discuss the particular choiddswever, the lost integration time from missing data points is
made and avoided as well as the limitations of the technigue set by both the reconstruction and the denoise@< In
CS for Spatial Dimension. Similar to the temporal or fact, while conventional sampling is anent with the data
spectral dimension, spatial dimensions carry redundancgmlection, as prior knowledge is not used to inform sampling,
because samples are composetteftypes of molecules that smart sSSNOM reconstruction makes use of the prior
are typically clustered or arranged in domains. The wavelatowledge of the object observed to reject noise and to
transform of such samples is known to be sparse.recover missing acquisitions information.
Additionaly, the 2D curvelet transform has been proven to
be sparse for images that are piece-wise smooth with smooth PERSPECTIVE AND SUMMARY

boundarie$’ This could be used to reduce the number ofwe propose a strategy to compeSNOM measurements
spatial positions of the tip using CS. As an example, CS hafd therefore greatly reduce acquisition time. To achieve that,
been used in AFM to increase acquisition $p@&ialong e reduce the number of mirror positions needed at each
the spatial dimensions can be combined with CS in the spectf@ation of the sample by exploiting redundancies & the
dimension and would fall in a family called Kroneck8i€S. SNOM data set. Known prior knowledge, like bandwidth of
the case of a sample containing a spatially isolated chemig@l |ight source, spectral sparsity, and the limited number of
species, the Wavelet domain would no longer yield a spaggstinct chemical species, is used to reduce the necessary
image and therefore would not comply with CS requirementgeasurements. By using the same prior knowledge in our
Itis arg_uable whether this would be an interesting fe:?\ture to B@aptive selection of the sampled mirror positions, we greatly
determined and hence whether the wavelet domain sparsiiyprove the performance sBNOM. SmarsSNOM opens
should be used or not. Moreover, as a practical notgme way to applications where a wigld of view and a good

performing this add|t|0na| Step slows down the reconstructi%ectrzﬂ resolution are both required apart from the nano-
because at each iteration one needs to perform a spatigbtric resolution.

wavelet transform for each mirror position used. Given the
small compression potential, the strong hypothesis on the ASSOCIATED CONTENT
sample and the added algorithmic cost, we decided not #o Supporting Information

implement this approach at this time. The Supporting Information is available free of charge at

Scanning. We note that mirror scanning stages hav . : :
limitations not included in our model. Indeed, speed aneawttps.//pubs.acs.org/d0|/10.1021/acsphoton|cs.OcOO553

precision of the mirror and tip motion are linked to the Experimental and analytical det&[sH
trajectory used. Lissajous curves are a good candidate for
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