

Home Search Collections Journals About Contact us My IOPscience

Corrigendum: Antenna-load interactions at optical frequencies: impedance matching to quantum systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 Nanotechnology 24 229501

(http://iopscience.iop.org/0957-4484/24/22/229501)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.138.65.173

The article was downloaded on 01/05/2013 at 05:30

Please note that terms and conditions apply.

IOP PUBLISHING NANOTECHNOLOGY

Nanotechnology 24 (2013) 229501 (1pp)

doi:10.1088/0957-4484/24/22/229501

Corrigendum: Antenna—load interactions at optical frequencies: impedance matching to quantum systems

2012 Nanotechnology **23** 444001

Robert L Olmon and Markus B Raschke

Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, CO 80309, USA

E-mail: markus.raschke@colorado.edu

Received 20 February 2013 Published 30 April 2013

Online at stacks.iop.org/Nano/24/229501

In our manuscript, we incorrectly equated electrical impedance with wave impedance in equation (3) on page 4 as

$$Z = R - iX = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{i\omega\mu}{i\omega\operatorname{Re}(\epsilon) - \operatorname{Re}(\tilde{\sigma})}}.$$
 (1)

 $\mu=\mu_0\mu_r$ and $\varepsilon=\varepsilon_0\varepsilon_r$ are the complex magnetic permeability and electric permittivity, respectively; $\tilde{\sigma}$ is the complex conductivity.

The two types of impedances are conceptually similar in some respect, but are not equal. Electrical impedance is a measure of the opposition that a circuit presents to the passage of a current when a voltage is applied, i.e., Z = V/I. On the other hand, wave impedance of an electromagnetic wave is the ratio of the transverse components (perpendicular with respect to the propagation direction) of the electric and magnetic fields, i.e., Z = E/H.

Equation (3) and related text should thus read correctly:

$$Z_{\text{elec}} = R - iX,\tag{2}$$

where R and X are related to the material parameters of the

conducting medium [1], and

$$Z_{\text{wave}} = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{i\omega\mu}{i\omega\operatorname{Re}(\epsilon) - \operatorname{Re}(\tilde{\sigma})}},$$
 (3)

where μ and ε are the complex magnetic permeability and electric permittivity of the homogeneous medium.

This correction does not affect any of the subsequent discussions or conclusions we draw in our paper.

Acknowledgments

We thank George Hanson (University of Wisconsin-Milwaukee) for pointing out this oversight, and Honghua Yang for helpful discussions.

References

[1] Jackson J D 1998 *Classical Electrodynamics* 3rd edn (New York: Wiley) equations 6.139 and 6.140