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I. Incoherent Emission

The four-wave mixing spectral peak observed in this work typically appears superimposed on a

broad incoherent emission background. The exact mechanism of this emission is currently under

debate, and can involve radiative recombination of laser-excited hot electrons within the conduc-

tion band [1, 2] or fast electronic Raman processes [3, 4]. In both cases, the emission process

involves electronic transitions within the sp-band of Au, which require additional momentum.

The emission is therefore strongly enhanced in nanostructures where the momentum is provided

through near-field modes as discussed in the main text.

The spectrum of the incoherent emission depends on the temperature of the electron gas through

the Fermi–Dirac distribution of the electronic occupation numbers, and can empirically be ap-

proximated by a Boltzmann distribution. The power dependence of the emission intensity there-

fore varies with wavelength. Fig. S1a shows power law fits for the incoherent emission intensity

vs. excitation power for 3 different wavelength in the emission spectrum: λ1 = 660 nm (black),

λ2 = 710 nm (red), and λ3 = 770 nm (blue). The extracted power law exponent varies from

1.50± 0.16 to 2.59± 0.02 in the selected range. The full spectral dependence of the power law

exponent is shown in (b), with extracted data (gray) and average as a guide to the eye (red).

a) b)

Fig. S1. (a) Power dependence of the spectral intensity of the incoherent emission from tip apex for three

selected wavelength values of 660 nm (black), 710 nm (red), and 770 nm (blue), together with power law

fits (lines) on a log-log plot. (b) Wavelength dependence of power law exponent extracted from fitting the

incoherent emission.
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II. FWM Measurements on Rod-Shaped Au Nano-Antennas

In order to show that our conclusions on the FWM mechanism are not limited to conical tips but

apply to any metallic nano-structure of different geometries, we performed FWM measurements

on Au nano-rods as shown schematically in Fig. S2a. The nano-structures are assembled into

periodic arrays to increase signal levels and avoid heat-induced damage in the case of single-

particle spectroscopy. The dimensions of the nano-particles are designed to support localized

plasmon resonance at the excitation wavelength, in order to increase the FWM response through

local field enhancement.

Periodic arrays of nano-rods are fabricated on glass substrates by e-beam lithography, with

subsequent deposition of a Ti adhesion and Au layers followed by lift-off. Ensemble-averaged

extinction spectra are taken in transmission geometry and shown in Fig. S2b for two samples

with plasmon resonances centered around 800 nm (Array 1, black) and 730 nm (Array 2, blue).

The samples are illuminated through a microscope objective by shaped Ti:Sapphire laser pulses

containing two narrow bands with frequencies ω1 and ω2. The focal spot size is designed to

cover ∼ 100 nano-particles. An ensemble-averaged FWM signal is collected in the back-scattering

geometry through the same objective.

For the case of plasmon-resonant nano-rods, the experimental FWM efficiency η′
FWM will

include frequency-dependent local field enhancement factors L at frequencies ω2 and ωFWM =

2ω1 −ω2:

η′
FWM ∝

[
χ(3)

]2
·L2(ω2) ·L2(ωFWM). (1)

Assuming the extinction spectrum A(ω) to be also proportional to L2(ω), we can normalize the

experimental FWM efficiency such that it only includes the third-order susceptibility,

ηFWM =
η′

FWM
A(ω2) ·A(2ω1 −ω2)

∝
[
χ(3)

]2
, (2)

where the extinction data from Fig. S2b is used to obtain A(ω).

The results for samples 1 and 2 are shown in Fig. S2c-d and exhibit the same general trend

as the results presented in the main text for the case of a single non-resonant tip. We note that

the FWM measurements on the nano-rods are ensemble-averaged, with possible inhomogeneous

broadening.
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a) b)

d)c)

Fig. S2. (a) Schematic of the FWM measurement on rod-shaped Au nano-antennas: sample containing a pe-

riodic array of antennas fabricated on glass is illuminated in far-field by Ti:Sapphire pulses with frequencies

ω1,ω2, and a FWM response is detected in the back-scattering geometry. (b) Extinction spectra measured

on two antenna arrays designed for different plasmon resonance condition. (c)-(d) Resulting FWM effi-

ciency as a function of the detuning between ω1 and ω2 for the two antenna arrays (black circles) together

with Lorentzian fits (red curves).

III. FWM Measurements on Different Tips

In the main text, the FWM data are shown for a single tip. In order to explore the variation of

FWM efficiency due to changes in tip geometry, we measure FWM detuning dependences on mul-

tiple different tips. Fig. S3a shows experimental FWM efficiency spectra for three selected tips that
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exhibit significantly different strength of nonlinear response and different apex radii as observed

with scanning electron microscopy. As can be seen in the figure, all three FWM efficiency spectra

are well fit by Lorentzian functions, with similar full width at half maximum (fwhm), while the

amplitudes of the Lorentzians vary from 2.2 for Tip C to 8.7 for Tip A. In our model, the amplitude

of the Lorentzian is equal to the ratio of the intraband term in the third-order nonlinear suscepti-

bility at zero detuning χ(3)
intra(0) to the third-order nonlinear susceptibility of Au χ(3)

Au . Further, this

ratio depends on the radius of curvature of the nano-particle as χ(3)
intra(0)/χ(3)

Au ∝ 1/R2. Therefore,

the different Lorentzian amplitudes extracted for different tips correspond to the varying tip apex

radii. We note that, as the tip geometry deviates from that of an ideal sphere assumed in the model,

the variations in the tip shape, such as the apical angle, will effectively appear as variations in the

radius of curvature extracted from the Lorentzian fit.

(a) (b)

Fig. S3. (a) FWM efficiency as a function of detuning measured for tips of different sharpness. The

difference in the relative contribution of the intraband third-order nonlinearity can be clearly observed as

the change in the FWM efficiency at zero detuning. (b) Parameters extracted from experimental data for

different tips and antennas used in the experiment: the linewidth of the Lorentzian fit, corresponding to

the electron collision rate (x-axis), and the amplitude of the Lorentzian fit, corresponding to the relative

contribution of the intraband nonlinearity term (y-axis). The radii on the right axis are given approximately

based on the distribution of tip apex sizes used in the experiment and the 1/R2 scaling of the Lorentzian

amplitude in the model. Gray shaded region indicates the range of Drude relaxation rates γDrude reported in

literature.

Fig. S3b summarizes the parameters extracted from the Lorentzian fitting of FWM curves for
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a number of tips. As can be seen in the figure, the range of electron collision rates γ (x-axis) is in

agreement with the Drude relaxation rate within experimental error. The variation in intraband to

interband contributions (y-axis) shows no correlation with γ, in general agreement with our model.

Here, γ as the electron collision rate is independent of the tip geometry for our range of tip radii,

while the Lorentzian amplitude scales with the radius of curvature as 1/R2. This confirms the

validity of our model and demonstrates how the FWM efficiency curves vary with varying shape

and size of nano-tips.

IV. Spectral Filtering Effects

In general, the presence of the grating on the tip shaft can result in various spectral filtering

effects that make the SPP spectrum at the tip apex deviate from that of the laser light incident onto

the grating. In our case, these effects have a broadband character, which is due to the following

reasons. First, we use a fan-shaped grating, where, within the focal spot of the incident laser

beam, the period of the grating is slightly different, resulting in splitting and filtering of different

frequencies. Second, the incident light on the grating is slightly defocused, with a distribution of

incident angles, resulting in a similar spectral broadening effect. Finally, the laser beam incident

onto the grating is usually coupled into SPPs closer to the lower end of the grating, so that the

propagation of SPPs through the grating and associated spectral splitting effects are minimized.

Most importantly, while any change in the spectral intensity of the SPPs propagating on the tip

will result in a corresponding change in the FWM efficiency, in our experiment, the FWM data is

normalized by a reference value calculated based on the SPP spectrum at the tip apex. Therefore,

any effects related to the spectral filtering and splitting introduced by the grating should cancel out

during this normalization, leaving our FWM efficiency results unaffected.
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V. Model

Consider the situation when all fields participating in FWM have frequencies significantly be-

low the interband transition edge in gold. In this case, as we show below, the FWM signal can be

dominated by the intraband response of free-carrier plasma, even if electrons in gold are assumed

to have a parabolic dispersion. The dominant component of the third-order current j = en(0)v(3)

is purely longitudinal, i.e. it is generated by FWM of longitudinal electric fields of the plasmon

modes. The nanotip or nanoparticle geometry facilitates outcoupling of the longitudinal current

oscillations to the outgoing transverse EM waves.

Neglecting the thermal motion, the equation of motion for a degenerate electron plasma against

the neutralizing background of immobile ions is

∂v
∂t

+
v
τ
+(v ·∇)v− e

me
E− e

mec
v×B = 0. (3)

with external electric and magnetic fields E and B, electron velocity v, effective mass me, electron

charge e, and mean free time between electron collisions τ. Eq. 3 has to be supplemented with the

continuity equation. However, we will need only the zeroth-order (unperturbed) electron density.

We assume that the electric fields of all modes, the field gradients, and the electron velocity

perturbation are along x axis, E = Ex̂ and v = vx̂. We also neglect the contribution from the

magnetic field. Then Eq. (1) reduces to

∂v
∂t

+
v
τ
+v

∂v
∂x

− e
me

E = 0 (4)

We seek a solution to Eq. (2) in the form of a perturbation expansion

v = λv(1)+λ2v(2)+λ3v(3)+ · · ·

and write the field as E = ∑n Ene−iωnt where ωn take the values ±ω1, ±ω2 etc., and En take the

values E1, E2, ... for positive frequencies and E∗
1 , E∗

2 , ... for negative frequencies.

We obtain the following set of equations

∂v(1)

∂t
+

v(1)

τ
=

e
me

∑
n

Ene−iωnt , (5)

∂v(2)

∂t
+

v(2)

τ
+v(1)

∂v(1)

∂x
= 0, (6)

∂v(3)

∂t
+

v(3)

τ
+v(1)

∂v(2)

∂x
+v(2)

∂v(1)

∂x
= 0. (7)
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The linear perturbation from Eq. (3) is

v(1) (t) =
e

me
∑
n

Ene−iωnt

γ− iωn
, (8)

where γ = 1/τ.

We will be interested in the response at frequency ω3 = 2ω1 − ω2 to the two pump fields

at frequencies ω1 and ω2. For small detunings ω1 −ω2 the main contribution comes from the

second-order perturbation v(2) at the beatnote frequency ∼ e−i(ω1−ω2)t . However, we will keep all

the terms until the final expression is obtained. Then Eq. (4) becomes

∂v(2)

∂t
+

v(2)

τ
=−

(
e

me

)2

∑
n,m

En∂xEme−i(ωn+ωm)t

(γ− iωn)(γ− iωm)
. (9)

Its solution is

v(2) (t) =−
(

e
me

)2

∑
n,m

En∂xEme−i(ωn+ωm)t

(γ− iωn)(γ− iωm)(γ− i(ωn +ωm))
. (10)

Substituting v(1) and v(2) into Eq. 7, we obtain

∂v(3)

∂t
+

v(3)

τ
=

(
e

me

)3

∑
n,m,l

El∂x (En∂xEm)e−i(ωn+ωm+ωl)t

(γ− iωn)(γ− iωm)(γ− iωl)(γ− i(ωn +ωm))
+

(
e

me

)3

∑
n,m

En∂xEm∂xEle−i(ωn+ωm+ωl)t

(γ− iωn)(γ− iωm)(γ− iωl)(γ− i(ωn +ωm))
. (11)

To get a numerical estimate, we replace ∂x with 1/R where R is the radius of the tip apex. This

gives
∂v(3)

∂t
+

v(3)

τ
=

3e3

m3
eR2 ∑

n,m,l

EnEmEle−i(ωn+ωm+ωl)t

(γ− iωn)(γ− iωm)(γ− iωl)(γ− i(ωn +ωm))
(12)

Integration gives

v(3) =
3e3

m3
eR2 ∑

n,m,l

EnEmEle−i(ωn+ωm+ωl)t

(γ− iωn)(γ− iωm)(γ− iωl)(γ− i(ωn +ωm))(γ− i(ωn +ωm +ωl))
. (13)

Now we select only the response at ω3 = ωn +ωm +ωl = 2ω1 −ω2; moreover, we keep only the

terms that have resonance when ω1−ω2 → 0, i.e. n = l = 1, m =−2 and m = l = 1, n =−2. This

gives

v(3) (t) =
3e3

m3
eR2

E2
1 E∗

2 e−iω3t

(γ− iω1)
2 (γ+ iω2)(γ− iω3)

(
1

(γ− i(ω1 −ω2))
+

1
(γ+ i(ω1 −ω2))

)
(14)
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Using P = χ(3)E2
1 E∗

2 e−iω3t and j =
dP
dt

= en(0)v(3) we obtain

χ(3) = i
6n(0)e4

ω3m3
eR2

γ

(γ− iω1)
2 (γ+ iω2)(γ− iω3)

(
γ2 +(ω1 −ω2)

2
) . (15)

There is an obvious resonance at ω1 = ω2 with a Lorentzian FWHM equal to 2γ. For a numer-

ical estimate, we assume all frequencies ω1,2,3 ∼ 1.5 eV and take n(0) = 6×1022 cm−3, me equal

to the effective electron mass in Au, 2R = 15 nm, and γ = 64 meV from the fit to the experimental

FWM efficiency (frequencies have to be converted into s−1). Then

|χ(3)| ∼ 6n(0)e4

m3
eγR2ω2

1ω2ω2
3
∼ 7.6×10−12 esu. (16)

This corresponds to |χ(3)| ∼ 1.1×10−19 m2/V2 in SI units.
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