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Abstract: Frequency-selective surfaces (FSS) are a class of metasurfaces 
with engineered reflectance, absorbance, and transmittance behavior. We 
study an array of metallic crossed dipole FSS elements in the infrared using 
interferometric scattering-type scanning near-field optical microscopy (s-
SNOM). We resolve the dependence of the near-field phase on the 
dimensions of the elements and compare with numerical models. The 
combined phase and amplitude information of the underlying near-field 
mode distribution compared to conventional far-field absorption 
spectroscopy greatly improves the targeted design of frequency-selective 
surfaces. 
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1. Introduction 

A frequency selective surface (FSS) consists of a periodically arranged array of resonant 
metallic antenna elements on a dielectric surface. FSS allows a surface’s transmission, 
reflectivity, and absorptivity to be engineered as a function of wavelength, polarization, and 
angle of incidence. There are many different FSS antenna elements to choose from including 
patches, loops, crosses, split-ring resonators, as well as more complex variations. The 
behavior of the FSS is a function of the geometry of the resonant elements, the array spacing, 
and the materials making up the elements and the dielectric surface. FSSs were originally 
developed at microwave frequencies [1], but have been scaled to infrared [2] as well as THz 
and optical wavelengths. Several significant applications have been demonstrated at these 
higher frequencies for FSSs including, narrowband filters [3], “perfect” absorbers [4], 
quarter-wave plates [5], thermal emitters [6–8], and reflectarray antennas [9–11]. 

Conventionally, characterization of spatially varying phase surfaces has relied on 
interferometric approaches to measure reflected or transmitted phase [9,12]. Although the far-
field behavior of the FSS is generally the parameter of interest, the origin of its behavior is 
dictated by the near-field interaction between its elements. Far-field amplitude absorption 
measurements alone are insufficient for their structural design and optimization of their 
spectral characteristics. Compared to other coupled antenna structures, an FSS in particular 
gains its spectroscopic properties from the details of the near-field coupling between its 
individual building blocks. However, the relevant details of the structural morphology, and 
resonances and coupling are not uniquely reflected in the far-field spectral response due to the 
loss in k-vector information in the near- to far-field transformation. 

Capturing both the optical amplitude and phase information at high spatial resolution is 
critical for the design of FSSs. Here, we use interferometric scattering-type scanning near-
field optical microscopy (s-SNOM). This technique has previously been used to study 
infrared antennas [13–16] and metamaterial elements [17] to study their underlying mode 
profile with phase and amplitude including dark modes [18]. 

In this paper we design, fabricate, and measure two FSSs in the long-wave infrared (λ0 = 
10.6 µm). The FSSs consist of loaded crossed dipole elements. One array consists of resonant 
elements which act as a “perfect” absorber. The second array consists of different sized 
elements, both larger and smaller than the resonant dimension at 10.6 µm. The latter FSS 
shows a significant phase ramp in the near-field as well as variations in amplitude. This 
agrees with the Kramers-Kronig relation, which predicts that light reflected or transmitted by 
a FSS will exhibit a significant phase variation at frequencies near the structure’s resonance. 
At a single wavelength, such as a laser line, this phenomenon can be exploited for wavefront 
shaping by using elements with different resonant frequencies to introduce a spatially varying 
phase shift. Ginn et al. [9,10] used this approach to design and fabricate a planar Fresnel zone 
plate reflectarray in the infrared (λ0 = 10.6 µm) by varying the sizes of the elements. Although 
such a reflectarray FSS suffers chromatic aberration, the phase-shifting approach can be used 
to provide near diffraction-limited focusing at a single wavelength [11]. 
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We show that s-SNOM can resolve both the amplitude and relative phase shift in the near-
field even when the absorption of the elements approaches unity. These experimental results 
are in agreement with simulation and far-field measurement. The s-SNOM technique 
overcomes some of the obstacles that would be encountered measuring phase variant FSSs 
using interferometric far-field approaches. Besides model validation, the s-SNOM approach is 
of potential interest to the metamaterial community where simulated phase is often used in 
place of measured phase during index extraction. It is also important to the study of high-gain 
nano-antennas, where the directivity is determined by the relative phasing of the elements 
[16]. 

2. Experimental setup 

The s-SNOM setup, shown in Fig. 1, is similar to the instruments discussed in Ref [13,14]. It 
consists of a modified atomic-force microscope (Innova, Bruker), operated in dynamic force 
mode. The FSS is illuminated at an incidence angle of 60° with respect to the surface normal 
by a CO2 laser beam (λ0 = 10.6 µm). This incident beam is s-polarized with respect to the 
sample (E-field parallel to the x-axis in Fig. 2). It is focused by an f/1 aspheric lens to a spot 
whose width is about 65 µm across the short dimension (x-axis). A platinum-coated probe 
(Arrow-NCPt, NanoWorld) is placed at the center of the spot. The incident laser radiation 
excites evanescent fields bound to the FSS. The tip scatters these near-fields into the far-field 
by acting as an antenna which is preferentially excited by the z-component of the E-field 
(normal to the probe axis and FSS). The backscattered light is collected and collimated by the 
lens, and the resulting beam is combined with a reference beam and focused onto a LN2 
cooled mercury-cadmium-telluride (MCT) detector, forming a Michelson interferometer. The 
detector responds to the intensity of the light and the interference between the reference and 
scattered beams allows phase-sensitive imaging as well as homodyne amplification of the 
weak near-field signal [13]. A wire-grid polarizer is used to block any specularly scattered s-
polarized light from reaching the detector. A quarter-wave plate rotates the reference beam so 
it can interfere with the p-polarized collected light from the tip. Cross-polarized excitation 
and detection helps to suppress the background signal and prevents the tip from being directly 
excited and coupling energy to the FSS [19]. 

 

Fig. 1. Scattering-type scanning near-field optical microscope with interferometric homodyne 
detection. 

The signal from the detector is recorded while the FSS is scanned relative to the probe 
(stationary in x and y, but oscillating with an amplitude of about 20 nm in the z-direction) and 
is proportional to 

 
2 22

2 cosd scat ref scat ref scat ref bS I E E E E E E φ I∝ = + = + + ⋅ +  (1) 

where φ denotes the phase difference between the scattered and reference beams. There is 
also a background signal, Ib, which results from backscattering not emanating from the tip-
sample interaction and not interfering with the reference beam. This signal is demodulated at 
the second-harmonic of the tip dither frequency, Ω, using a lock-in amplifier. This eliminates 
the constant |Eref|

2
 term and when the reference beam is much more intense (~10 × - limited 
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by the range of the detector) than the scattered near-field the measured signal will be 
proportional to the last term two terms of Eq. (1). The relative phase difference is controlled 
by adjusting the length of the reference leg. We collect images at a series of reference phases 
and use a least-squares approach on point-by-point basis to extract only the data that varies 
with respect to reference phase, suppressing the background. 

3. FSS design and fabrication 

Prior to fabrication, the FSS was modeled using a commercial finite-element code simulator, 
Ansoft HFSS. Figure 2 shows the geometry of the FSS. The aluminum crosses are t = 75 nm 
thick and are separated from an optically thick aluminum ground plane layer by an h = 1.2 
µm thick layer of benzo-cyclobutene (BCB) (Dow Cyclotene 3022-35 resin). BCB was 
selected because of its ease of deposition via spin coating, as well as its relatively low loss at 
infrared wavelengths. The cross-arm width of the wires was constant at w = 0.25 µm as was 
the end-cap length of b = 0.75 µm. 

 

Fig. 2. FSS geometry. (a) Definition of geometric parameters of FSS, and SEM images of (b) 
uniformly-sized resonant crosses and (c) five-element phase ramp. 

In the numerical model, frequency-dependent properties (measured with ellipsometry) 
were used for the BCB and aluminum. At 10.6 µm, BCB has complex index of refraction n + 
ik = 1.557 + i0.0215, and aluminum has (n, k) = (23.86, 46.10). Figures 3(a) and 3(b) show 
the magnitude and phase of the reflectivity as a function of element length and parameterized 
on periodicity, calculated for the case of an infinite uniform array that is illuminated at an 
angle of incidence of 60° with s-polarized radiation, corresponding to the experimental s-
SNOM conditions. The ground plane prevents any transmission through the structure. Hence 
light that is not specularly reflected is either absorbed by the FSS or diffracted. Figure 3(a) 
shows that each periodicity has a corresponding resonant dimension, a, and that increased 
spacing between elements results in a larger resonant element size. According to the 
numerical model, the p = 5 µm case results in the minimum reflectivity which is less than 
0.01 when a = 2.375 µm. Figure 3(b) shows that there is more than a 180° phase shift in the 
reflected radiation for the FSSs with 2-4 µm periodicity. For larger periodicities the phase 
shift is less due to diffraction. From modeling and theory, the phase change with respect to 
element size is slower when the system is detuned from resonance [9]. 

To experimentally verify the effect of changing element size we fabricated two samples, 
SEM images of which are shown in Figs. 2(b) and 2(c). A fixed unit-cell spacing, in both x- 
and y- directions, p = 5 µm was selected because it provides the maximum absorptivity with 
minimal grating lobes (< λ0/2) [10]. For this structure the near-field intensity scales with the 
absorbance. The first sample consists of the uniform resonant elements, where a = 2.375 µm. 
The second sample consists of five different- sized elements in a ramp array: a = 1.625, 
2.000, 2.375, 2.750 and 3.125 µm. The five element pattern repeats in the x-direction. Even 
though the periodicity is constant the intra-element spacing varies along with the size of the 
neighboring elements, so we cannot expect the phase shifts of the off-resonant elements to be 
identical to the case of uniform elements and periodicity in Fig. 3. Because of the high (near-
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perfect) level of absorbance the designed phase ramp would not serve as a good reflectarray, 
where a figure of merit is high reflectance; however, it serves well to illustrate the resonance 
induced phase difference with maximum near-field intensity. 

 

Fig. 3. Numerical modeling of an infinite FSS for s-polarized, 60° off-normal λ = 10.6 µm 
illumination: (a) reflectivity and (b) reflected phase. 

The samples were fabricated using e-beam lithography. An aluminum groundplane 150 
nm thick was deposited using e-beam evaporation on a Si substrate. BCB was spun onto the 
surface of the Al at a speed of 3500 RPM and baked for 5 min on a hot plate for a cured 
thickness of 1.2 µm. ZEP 520-A7, a high-resolution positive-tone e-beam resist was then 
spun on top of the BCB and the patterns were written by a Leica EBPG5000 + system. After 
development the aluminum was deposited using e-beam evaporation and lifted off. Each 
pattern is 2 × 2 mm in overall dimensions. 

4. Results 

We measured the reflectance from the uniform p = 5 µm, a = 2.375 µm FSS sample using 
FTIR (Perkin-Elmer). In this case the light is predominately normally incident to the FSS and 
unpolarized (the symmetry of the crosses makes the FSS polarization insensitive under 
normal illumination). Figure 4(a) shows the measured reflectivity as well as predictions from 
the HFSS model. There is good agreement over most of the spectrum. HFSS predicts a sharp 
coupling to surface waves in the standoff at 6.14 µm where the experiment shows that this 
effect is less concentrated. In both measurement and experiment the resonance of the structure 
shifts to 9.25 µm under normal incidence. At this wavelength, HFSS predicts a reflectivity of 
< 0.0001 while we experimentally measure the reflectivity to be 0.015, near the floor of the 
instrument. This makes the structure a near-perfect absorber at this wavelength. We were 
unable to measure the angular dependence of the FSS directly, but simulated angular and 
spectral reflectance is highlighted in Fig. 4(b) and 4(c), which shows the shift in peak 
absorbance to 10.6 µm under 60° off normal incidence TE illumination. The figure also 
shows the sharp diffraction edge when the light is TM polarized. 
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Fig. 4. Far-field reflectivity of an infinite uniform FSS. (a) FTIR measurement and simulation 
at normal incidence. Simulated (b) TE and (c) TM specular reflectivity as a function of 
incidence angle and wavelength. 

Figure 5 shows the s-SNOM results for the uniform-array FSS. The near-field map shows 
that the elements are in phase with each other. An HFSS simulation of the normal field 
component, Ez, evaluated 5 nm above the top surface of the elements is shown in Fig. 5(d). 
Scanning introduces a phase shift in the y-direction due to the off-normal illumination in the 
yz plane (see Fig. 2). This does not occur in the SNOM image because the portion of the 
sample being sampled by the probe is constantly illuminated with the same phase (the beam is 
focused on the tip). The simulated result has been corrected for this phase shift so that 

 
0 0

sinφ φ y k θ= − ⋅ ⋅  (2) 

where φ and φ0 denote the plotted phase and calculated phase respectively. In Figs. 5 and 6 
we have employed Eq. (2) to remove the phase shift from the simulation results although it 
could also be used calculate the true phase from experimental results. When the reference leg 
is moved λ0/4 (the distance the light travels in the reference leg is twice the displacement of 
the mirror as shown in Fig. 1) the phase is shifted by 180° and the direction of the E-field 

(+/−) is reversed from Fig. 5(c). 

 

Fig. 5. SNOM results for uniform resonant FSS: (a) SEM image of structure; (b) sample 
topography from AFM data; (c) measured SNOM signal and (d) HFSS simulation results 
showing Ez after post-processing to account for scanning (Media 1 and Media 2). 

Figure 6 shows the s-SNOM results for the phase ramp of different sized elements. The 
phase-resolved field is plotted in Fig. 6(c). In that data set, the reference leg (phase) was 
adjusted to produce the maximum amplitude at the center (resonant) cross. Figure 6(e) shows 
the value of the Ez from HFSS. Figures 6(d) and 6(f) show the measured and calculated 
signals when the reference leg has been moved λ0/8 = 1.32 µm (90°). These results 
qualitatively agree with the experimental results and show that the off-resonant crosses on 
either side of the resonant structure are out of phase with each other. 
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Fig. 6. s-SNOM results for phase ramp FSS: (a) SEM image of structure; (b) sample 
topography from the AFM data; (c) and (d) measured s-SNOM signal with reference leg 
adjusted to maximize signal from center cross and 90° relative phase; (e) and (f) post-
processed HFSS simulation results showing Ez at 0 and 90° relative phase (Media 3 and Media 
4). 

Figure 7 shows s-SNOM measurements from a line scan over rows of the elements. Five 
different rows of elements were scanned. Each row was scanned 25 times at different phases 
(advanced on a 45° interval), then a least-squares fit was performed to resolve the amplitude 
and relative phase at each point along the line. The magnitude of the fitted near-field signal 
along with |Ez|z = 80 nm from simulation (normalized to the incident field intensity) for the 
uniform elements is plotted in Fig. 7(a) and for the phase ramp array in Fig. 7(d). The fitted 
and simulated phases are compared in Figs. 7(b) and 7(e) along the topographies for both 
samples in Figs. 7(c) and 7(f). 
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Fig. 7. Comparison between s-SNOM and simulation results: (a) normalized magnitude; (b) 
phase; and (c) topography for the uniform FSS array; (d) normalized magnitude; (e) phase ; 
and (f) topography for the phase ramp. 

There is good agreement between the measured and simulated data, particularly for the 
uniform elements. As expected the elements are in phase with each other for the uniform 
sample. For the different-sized elements, the resonant element has the brightest near-field 
signal. Both simulation and experiment show a phase transition across the pattern with 
smaller elements leading larger elements. The discrepancies between measured and simulated 
phase can largely be attributed to self-homodyne interference between the scattered signal and 
a position-dependent background in addition to the reference leg as well as challenges 
precisely assigning phase between the structures where the signal amplitude is very low. 

5. Conclusion 

An FSS consisting of loaded crossed dipole elements was designed, fabricated, and imaged 
using s-SNOM. The structure was designed to have near perfect absorption at normal 
incidence (9.75 µm) and 60° off normal incidence (10.6 µm). We showed that there is a phase 
shift for the reflected light for off-resonant elements with simulation and s-SNOM 
measurement. s-SNOM enabled access to the near-field phase even though the far-field 
reflectance was very low. Besides demonstrating utility of s-SNOM for studying this type of 
structure, this work will aid in the design of steerable reflectors with defined directivity at IR 
and visible frequencies. Beyond model validation, s-SNOM will be useful for the case of 
large semi-periodic or finite arrays that would be computationally difficult to simulate. It also 
furthers the design and construction of FSS with high absorption. 
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