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In the following we provide a semi-quantitative model description of the ex-
perimental requirements for phase resolved imaging of Ez using weak-field ho-
modyne interferometric amplification. Without loss of generality, we choose
a simple model behavior for the distance dependence of the Ez field com-
ponent of the plasmonic nanostructure at a fixed location above its surface
as Ez = E0 exp[−z

d0
] with decay length d0. The motion of the AFM tip as a

scattering probe is described by a harmonic function z(t) = d+a[1+cos(ωdt)]
oscillating around an average height d + a above the surface with amplitude
a and distance of closest approach d as shown schematically in Fig 5.

The total signal at the detector has two sources, the near-field scattered by
the tip ∝ Ez and the reference field from the interferometer Eref exp[i(ωt +
Φref)] of adjustable amplitude Eref and phase Φref . In the limit that the
amplitude of cantilever oscillation a is smaller than the exponential decay
constant d0, i.e., a < d0, the total field can be approximated by a series
expansion:

Eout(z, t) = Eref exp[i(ωt + Φref)]

+ E0 exp[
−z

d0

] exp[i(ωt + Φnf)] (2)

≈ Eref exp[i(ωt + Φref)]

+ E0(1− z

d0

+
z2

2d2
0

) exp[i(ωt + Φnf)], (3)

with Φnf and Φref representing the optical phases of the near-field signal and
reference field, respectively. Equation 3 can be expressed as a Fourier series
in terms of harmonics of the cantilever oscillation as

Eout(t) = Eref exp[i(ωt + Φref)]

+
2∑

n=0

An cos[nωdt] exp[i(ωt + Φnf)], (4)
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with the coefficients An given by:

A0 = E0

(
1− a + d

d0

+
2d2 + 4ad + 3a2

4d2
0

)
(5)

A1 = E0

(
− a

d0

+
a(a + d)

d2
0

)
(6)

A2 = E0

(
a2

4d2
0

)
. (7)

Hence, the detected intensity, Iout(t) = Eout(t)·E∗
out(t), expressed in terms

of harmonics of ωd is

Iout(t) =
4∑

n=0

In cos[nωdt]. (8)

The magnitudes of the first and second harmonic terms, which are typi-
cally measured in s-SNOM, are given by

|I1| = |2ErefA1 cos[Φ] + 2A0A1 + A1A2|, and (9)

|I2| = |2ErefA2 cos[Φ] + 2A0A2 + A2
1/2|, (10)

with Φ = Φref − Φnf representing the phase difference between the reference
and tip scattered fields.

Fig. 6(a) displays the expected dependence of |I2| on Φ for different ref-
erence field amplitudes Eref . Corresponding experimental results acquired
over the end of a Ag wire under p polarized optical excitation are shown
in Fig. 6(b) for reference amplitudes corresponding to the regimes where
Eref � E0, Eref ≈ E0, and Eref < E0. The excellent agreement confirms the
applicability of the assumptions made.

For most practical applications, two interferometric homodyne amplifi-
cation regimes can be distinguished: the conventional strong amplification
with Eref � E0, and the weak amplification applied here with Eref ∼ E0. For
Eref � E0, the first term in Eqns. 9 and 10 becomes dominant which results
in strong amplification of the scattered near field when the reference signal is
either in or out of phase with the scattered near-field as shown. Signal inten-
sity minima exist when the first term vanishes for Φ = π/2. This behavior
is seen in Fig. 6(a) (solid line) showing a simulation of the second-harmonic
signal using Eqn. 10 in comparison with corresponding experimental results
(b).

20



Figure 5: Model of the experimental configuration for the simulated detected
near-field under weak homodyne amplification.

As the amplitude of the reference field is decreased, in addition to an
expected decrease in the detected signal at the cantilever harmonic frequen-
cies, the phases in which constructive and destructive interference occur also
change. For a given cantilever harmonic, as the strength of the reference field
is decreased from the strong amplification limit, the cusp shaped minima
originally located at Φ = π/2 and Φ = 3π/2 begin to approach one another
eventually merging to form a single minimum at Φ = π when Eref � E0. This
is characteristic of a weak homodyne amplification regime in which construc-
tive and destructive interference occurs for phases of Φ = 0 and Φ = π,
respectively. The transition from the strong, to intermediate, and finally to
the weak-homodyne amplification regime is illustrated in Fig. 6 by the solid,
dashed, and dotted lines, respectively.

It should be noted that this model does not include the far-field back-
ground scattering self-homodyne field Ebg as an additional contribution. This
background electric field is present due to far-field back scattering from the
sample roughness and the tip shaft. It is characterized by a relative phase
dependence on the spatial distribution of scattering centers resulting in a
self-homodyne amplification of the near-field signal from the tip. This signal
is observed in our measurements giving rise to a constant signal offset.
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Figure 6: Simulated (a) and experimental (b) s-SNOM signal intensity vari-
ations as a function of the phase difference between near-field and reference
phase Φ = Φref−Φnf for three different ratios of near-field and reference field
amplitudes Eref/E0 of 100 (solid line), 4 (dashed line), and 1 (dotted line).
The weak homodyne case (dotted) with minima and maxima at respective
out-of-phase near-field regions, thus provides direct visualization of mode
behavior.
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