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Supplementary Note 1: Near-field graphene FWM

The near-negligible FWM response of the tip under the tip-perpendicular excitation

condition, the weak near-field enhancement between the tip and sample, and the generally

inefficient tip scattering in the absence of the tip-parallel antenna effect, together, highlight

the large efficiency of the nano-confined graphene FWM excited from an estimated near-field

interaction area as small as ˜(10 nm)2π, which (as determined by the tip radius confined

local field distribution), corresponds to as few as 104 atoms. Despite the nano-localized

excitation, the Doppler broadening of the resulting FWM polarization distribution leads to

delocalized radiative emission from an extended >100 nm diameter area.

Supplementary Note 2: Distinct enhancement at edges in far-field
and near-field FWM imaging

Near-field graphene FWM imaging exhibits an enhanced FWM signal along edges (Fig. 1e

and Fig. 2-3). However, this feature is absent in corresponding far-field control experiments.

Figure S1a shows far-field FWM imaging of the same graphene sample presented in Fig.

2b. The edges show no distinct difference in FWM intensity compared to the internal

sheet region. Figure. S1b-c show this contrasting behaviour on another sample in direct

comparison, with FWM enhancement at the edge in near-field (Fig. S1b), but not in far-field

imaging (Fig. S1c). Despite the ˜400 nm spatial resolution limit of our far-field imaging, a

200-300 nm edge enhancement would still manifest itself in a spatially convoluted enhanced

far-field edge signal if present. This indicates that the Doppler broadening associated with

high momentum states of the interacting field is only present in near-field FWM.

In the vicinity of the graphene edge, the broken symmetry of the edge lifts the destructive

interference of in-plane FWM polarization and thus gives rise to stronger FWM signals in

near-field imaging. However, this effect does not exist in far-field FWM since the excitation

field does not lead to an in-plane destructive FWM polarization density.

Figure S1. Far-field (a,c) and near-field (b) graphene FWM imaging. (a) Far-field FWM

imaging of the same graphene sample area (dashed line box) as shown in Fig. 2b. (b-c) Near-

field (b) and corresponding far-field (c) FWM imaging of another graphene sample. No FWM

enhancement at graphene edges is observed in far-field imaging.
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Supplementary Note 3: FWM heterogeneity and spatial resolution
of FWM nanoimaging

Structural heterogeneities disrupt in-plane translational invariance and spatially localize

the near-field interaction, which gives rise to increased localization of the FWM signal to the

ultimate tip-radius near-field confinement limit. Figure S2 shows corresponding examples of

increasing spatial localization with increasing perturbation of translational invariance in the

graphene sheet, from large scale (˜100’s nm) standard heterogeneities (Fig. S2a), to finer

scale wrinkles (˜10’s nm, Fig. S2c) in graphene. In contrast, simple roughness features in

Au give rise to a tip apex size related highest spatial localization of the FWM near-field

response (˜15 nm, Fig. S2e).

Figure S2. FWM nanoimaging of structural heterogeneities. FWM nanoimaging of

graphene heterogeneities (a), wrinkled graphene with strains (c), and a rough Au surface (e),

showing spatial confinement to ˜110 nm (b), ˜40 nm (d), and ˜15 nm (f), respectively, extracted

from the FWM signal variation along the white dashed lines, and defined by the signal rise from

10% to 90%.

Supplementary Note 4: Circumferential edge-parallel FWM

At internal and external boundaries, the spatial FWM source polarization is found to be
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oriented parallel with respect to the edges as seen in Fig. 3a-c. As a result of the far-field

radiation from in-plane dipoles, we expect a strong FWM signal with horizontal polariza-

tion along the y-axis when detected under s polarization (Fig. 3b). For p polarization,

due to the inefficient collection geometry for the in-plane electric dipole radiation, an only

∼7 times smaller intensity of the FWM signal polarized along the x-axis is observed (see

normalized image in Fig. 3c). Figure 3b-c show the edge contrast reversal of the polarized

FWM images. Such a circumferential edge-parallel FWM response mainly results from the

radially asymmetric in-plane FWM current distribution at graphene edges, which further

enhances the FWM signal due to the weaker cancellation effect of in-plane dipoles.

Supplementary Note 5: Resonant electronic transitions and large
momenta compensation from tip.

According to the microscopic expressions for χ(3) for graphene difference-frequency mixing

[1, 2], there are five possible resonant transition pathways in total (Fig. S3a-e), yet only

(c-e) dominate the FWM process and show a δω = ω1−ω2 frequency detuning dependence.

However, in-plane momentum is required to resonantly connect all photon interactions, with

example shown in (f) for the pathway (e). Based on the linear energy dispersion k = ω/vF ,

for excitation condition ~δω ∼ 40 meV, an in-plane momentum difference k// ∼ 63 µm−1

would be required for resonant interaction. In near-field induced FWM processes, the large

plasmon wave vectors q ∼ π/R generated at the tip apex can reach beyond ∼ 300 µm−1

for typical tip radii of R ∼ 10 nm [3], which compensates the momentum difference of

nonresonant transitions and makes graphene FWM even more efficient.

Figure S3. Resonant transitions via near-field momenta at tip apex. The left five

panels (a-e) show the resonant pathways in graphene FWM processes with each corresponding

photon resonant energy indicated below. The right panel (f) shows the tip near-field wave vector

momentum matching effect for pathway (e).

We estimate the SPP adiabatic efficiency gain and associated near-field momenta us-

ing the adiabatic nanofocusing model. The result is calculated from analytical expressions
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for SPP propagation on a cone following established procedures [4–7], so neither mesh di-

mensions nor volume affect the result. The tip material is gold and no boundaries are

assumed. Figure S4a-b show the spatial distribution of field enhancement for in-plane (tip-

perpendicular, x) and out-of-plane (tip-parallel, z) electric field (E-field) components Ex and

Ez, calculated for a gold tip with an apical angle of 6◦. In the vicinity of a 10 nm tip apex,

optical fields are enhanced 10-20 times, as seen from the corresponding E-field profiles in

x and z directions (Fig. S4c-d). Due to the adiabatic compression of SPPs, with effective

refractive index neff diverging with decreasing tip radius R as ∼ 1/R, SPP wave vector qz
at R = 10 nm can be estimated as qz ∼ 23 µm−1, about 3 times higher than that in free

space (see Fig. S4e).

We further estimate the distribution of k-vectors near tip apex via Fourier transform of the

E-field spatial distribution. As shown in Fig. S4f, the distribution of qz (black) is relatively

broad due to strong near-field gradients at the tip apex, easily reaching the momentum of

∼ 63 µm−1 (blue dashed line) required for the process in Fig. S3f. Distribution of in-plane

momenta qx is also broad (red), due to the field confinement in the transverse direction. We

estimate the efficiency of the mechanism to generate in-plane momenta through the ratio of

the two distributions at q = 63 µm−1 as E(qx)/E(qz) ∼ 0.25. We note, however, that such

efficiency can depend strongly on the nanoscale details and asymmetry of the tip apex.

Figure S4. Near-field distribution and associated enhanced wave vectors. In-plane (a)

transverse E-field distribution (Ex) and out-of-plane (b) longitudinal E-field distribution (Ez). (c)

Profiles of E-field along x-coordinate (in-plane). (d) Profiles of E-field along the tip surface. (e)

Out-of-plane component of SPP k-vector as a function of tip radius. (f) Fourier transforms of

(c) and (d) yielding E-field distribution in k-space. Gray dashed line indicates the low free space

photon momentum, blue dashed line indicates momentum required for the nonlinear process in

Fig. S3f and enhanced in near-field.
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Supplementary Note 6: FWM dynamics in graphene measured by
a non-resonant tip

Figure S5a shows a non-resonant instantaneous FWM response of a tip with simulation

with T2 = 0 fs matching the FWM autocorrelation trace [6]. In addition to the FWM

dynamics of the graphene edge (Fig. 5b), the FWM dynamics of the graphene sheet (left

red square in Fig. 5a) is shown in Fig. S5b, which is described by a dephasing time of

T2 = (6 ± 1) fs, similar to the dynamics resolved at the edge. Note that the two delays

τ = 5.6 fs and 11.2 fs in Fig. 5 and Fig. S5b were set slightly offset from the exact peak

positions at 5.5 fs and 11 fs, respectively, but the corresponding FWM data (blue circles)

fall well onto the simulated FWM autocorrelation trace with T2 = (6 ± 1) fs.

Figure S5. FWM dynamics in tip and graphene. (a) Spectrally integrated tip FWM

autocorrelation trace (black circles) and simulated FWM response with T2 = 0 fs (black line,

together with black dashed envelope). (b) Extracted FWM dynamics (blue circles) of graphene

sheet area indicated by left red square in Fig. 5a for the five delays τ = 0 fs, 5.6 fs, 11.2 fs, 16.6

fs, and 19.3 fs, showing a finite decoherence time of T2 = (6 ± 1) fs (red line, together with red

dashed envelope) compared to a simulated instantaneous response (black trace envelope only).

Supplementary Note 7: Femtosecond spatio-temporal FWM imag-
ing

In addition to the data shown in Fig. 5, we explore the FWM decoherent behaviour

of another graphene sample with spatial FWM heterogeneities (Fig. S6). Visualizing the

FWM decoherence behaviour across the whole graphene sample, there is no discernible

spatial variation in T2, even for the two extreme points of spatially homogeneous region (B)

and large local strain or wrinkle associated localization with enhanced FWM (A) (Fig. S7).

Graphene FWM dynamics at points (A) and (B) also show a similar decay behaviour

compared to the tip FWM. Different from the non-resonant tip used in Fig. 5 and Fig. S5,

the tip used in this imaging experiment exhibits a resonant FWM response with T2 = (5 ±
1) fs. The finite tip response does not allow to discernibly quantify T2 of graphene in this
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Figure S6. Ultrafast FWM imaging. Femtosecond FWM spatio-temporal imaging of the same

graphene region with two-pulse excitation at different inter-pulse delays. The signal is strongest

for zero delay decaying almost completely within ∼ 20 fs. Animated GIF available online.

experiment. However, the observation of the extremely fast decay is still consistent with the

ultrafast T2 = (6 ± 1) fs extracted in Fig. 5.

Figure S7. Coherent FWM dynamics. Extracted FWM intensity of points A (red) and B

(black) for the six delay times, shows no discernible spatial variation in T2, corresponding to an

upper limit of T2 ≤ 6 fs.
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Supplementary Note 8: Numerical aperture dependence of en-
hanced FWM edge width

We rule out a far-field artifact by varying the FWM detection numerical aperture, ver-

ifying the pure near-field signature of the emission (Fig. S8). This verifies the presence

of a new effect giving rise to the spatial delocalization, which we attribute to a nonlocal

contribution to χ(3) in near-field FWM of graphene.

Figure S8. Numerical aperture dependence of the width of the enhanced FWM signal

at the graphene edge. The enhanced FWM widths at a graphene edge for three different

aperture sizes for the FWM signal beam. 95% of FWM signal pass the aperture with a size of 3.5

mm. The line width variation from 250 ± 3 nm to 280 ± 4 nm is much smaller than the spatial

resolution of far-field emission response (> 400 nm) while constricting the numerical aperture,

indicating that the underlying spatial delocalization effect (nonlocal FWM process) is intrinsic to

the near-field FWM of graphene and not a far-field artifact.

Supplementary Note 9: AFM imaging of graphene.

The corresponding AFM images (Fig. S9) for the graphene samples in Fig. 1e and Fig.

2b verify the high quality of graphene edges, exhibiting a well defined outline of the graphene

flakes with sharp edges and only minimal edge roughness on at most few nm length scale.

With the AFM images, we can rule out the possible influences of defects, folds, and other

contaminations near the edges responsible for the delocalized FWM response at the edges.
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Figure S9. High resolution AFM images of graphene samples. AFM images (a) and (c)

show the topography of the graphene samples studied in Fig. 1e and Fig. 2b, respectively. The

line profiles (b) and (d) extracted from the height variation along the white dashed lines in the

AFM images show that the edges are clean, flat and without folds.

Supplementary Note 10: Micro-Raman mapping of graphene.

Raman spectroscopy provides information on the physical, chemical, and electronic prop-

erties of graphene. Micro-Raman mapping (Fig. S10a-b) is performed to analyze the edge

structure, defects and folds. A homogeneous G-mode Raman (IGRaman) and absence of D-

mode Raman signal (IDRaman) verify the high quality of graphene, and reveals no correlation

between lattice structural related heterogeneities and FWM broadening. Raman spectra

(Fig. S10c-d) are used to determine the graphene layer thickness, and the assigned layer

numbers are shown in Fig. 1e. We also verified that the unfolded area in Fig. 2b is trilayer.

Figure S10. Micro-Raman mapping of G-mode (a) and D-mode (b) of graphene in Fig.

2b, and the Raman spectra of graphene in Fig. 1e (c) and Fig. 2b (d). G-mode Raman

signal observed in graphene flake with negligible D-mode response.
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Supplementary Note 11: FWM imaging of graphene on different
substrates.

As a widely used substrate for graphene, SiO2/Si has higher surface quality, lower rough-

ness and facilitates the exfoliation of graphene with high quality. Thus we used SiO2/Si

as the substrate for the majority of the experiments. The graphene samples prepared on

SiO2/Si are further required to demonstrate the doping dependence. For comparison and

as control experiments, we also performed near-field FWM imaging of graphene exfoliated

on gold substrates, and ferroelectric nanorod arrays, of composition PbZr0.52Ti0.48O3 (PZT)

(Fig. S11). As can be seen, the FWM delocalization at the graphene edges is substrate

independent, and shows that edge enhancement and spatial broadening are universal and

robust features.

Figure S11. FWM imaging of graphene on PZT (a) and gold substrates (b). The

near-field FWM images of graphene samples exfoliated on PZT and flat template-stripped gold

substrates, show the universal FWM edge enhancement and spatial broadening delocalization.

Supplementary Note 12: Gate voltage dependence of FWM nano-
imaging of graphene FET device.

The nonlinear wave mixing has been demonstrated to excite surface plasmons in graphene,

as proposed in [8] and studied experimentally in [9]. The near-field FWM process may be

mediated by surface plasmon generation, affecting the near-field FWM efficiency and edge

enhancement. Since the Dirac plasmon in graphene is gate-tunable [10–13], a graphene field

effect transistor (FET) provides the ability to study the effect of Dirac plasmons on the

FWM process. On the other hand, the presence of oxygen defects in SiO2 substrate results

in hole-doping of graphene. It is also necessary to investigate the effect of defects on Fermi

level and in turn on the FWM process. Thus we employed a graphene FET device to study

the possible gate dependence of the near-field FWM efficiency (Fig. S12).

For graphene FET devices we use a SiO2 layer as the gating material, with typical dielec-

tric constant ˜4, thickness ˜90 nm, hence a gate capacitance ˜4×10−2 µF/cm2. We applied

a back gate voltage Vg from -20 V to 20 V, studied the FWM integrated intensity across

the edge, and FWM intensity variation at 3 locations: on graphene grain (black), on edge

(red), and on substrate (blue). We did not observe a noticeable change of the FWM signal
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efficiency or edge enhancement as a function of Fermi level at any location. Taking into

account the charge neutral point VCNP = 18.5 V due to the intrinsic doping in this device,

the highest Fermi level = 0.36 eV with hole doping was achieved with Vg - VCNP = -38.5

V. In order to effectively tune the FWM response by blocking the resonant pathways [2] as

illustrated in Fig. S3, a Fermi level larger than half of the excitation photon energies (˜860

nm) is required which means Vg - VCNP would have to reach -160 V, a value too large to

be sustained by the thin SiO2 gate layer. Alternative, gating methods such as ionic liquid

gating to shift the Fermi level over a wide range is not suitable for near-field measurements.

The near-field gate dependence of the FWM clearly indicates that the nonlocal effect is

independent of gating for low doping. Albeit a negative result, with adiabatic nanofocused

FWM nano-imaging being already a complex process, this example provides a perspective

for possible future nano-FWM experiments on active devices.

Figure S12. FWM nano-imaging of graphene FET device. (a) Graphene resistance as a

function of back-gate voltage Vg. Inset of (a) shows the bright field optical image of the graphene

FET device. (b) FWM imaging of graphene area near edge at Vg = -20 V. (c) Line traces along

the red arrow in (b) of integrated FWM intensity gated at different Vg. Line traces from bottom

to top correspond to Vg changed from -20 V to 20 V in steps of 5 V. (d) Back-gate voltage ramp

and FWM at 3 locations marked in (b): on graphene sheet (black), on edge (red), and on substrate

(blue).

Supplementary Note 13: AFM and nano-FWM image overlay.

From analysis and superposition of AFM and FWM images, it is evident that the near-

edge FWM signal peaks at a distance close to the value of spatial delocalization inside from

the actual graphene edge (Fig. S13). At the actual edge the signal decays to the nearly
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negligible substrate signal level. This behavior is in fact a further verification of the nonlocal

Doppler broadening model which predicts that the nonlinear susceptibility decreases at near-

field wave vectors larger than the cutoff value qmax ∼ ∆ω/vF . The signal cannot have a

sharp peak at the edge as this would require a nonlinear polarization spectrum extending

to larger wave vectors than this cutoff. We therefore expect the spatial distribution of the

nonlinear polarization to be a smooth function extending over a scale of ˜100’s nm from

its peak and smoothly dropping to zero at the edge as supported by the data. There is

a difference in delocalization between graphene internal edge (white dashed line between

folded and unfolded area), and edge-to-substrate. Both the folded area and unfolded area

close to the internal edge show an enhanced FWM signal and a broader delocalization than

the edge close to the substrate.

Figure S13. AFM and nano-FWM image overlays of the graphene samples as shown in

Fig. 1e (a) and Fig. 2b (b). These overlays show that signal distribution near the outer edge

is smooth, symmetric, and its peak offset from the graphene edge. Each AFM image is overlaid

with the corresponding FWM image with 75% opacity. The dashed white lines indicate the actual

graphene edges.

Supplementary Note 14: Coherent phonon effect on graphene
FWM.

In principle, the original bandwidth of our ˜10 fs pulses allows for coherent excitation

of vibrational modes in graphene. However, with the particular spectral filtering applied

in this experiment for maximizing weak FWM signals from nanoscopic sample volumes,

the effective bandwidth is reduced to ˜0.15 eV. This does not allow exciting the prevalent

G-mode (0.196 eV) and puts the D-mode (0.167 eV) at the very far shoulder of the laser

spectrum, where the corresponding FWM intensity is already close to the noise floor. On

the other hand, low-frequency phonons such as shear modes and breathing modes that exist

in few-layer graphene are in principle accessible within our spectral bandwidth [14]. How-

ever, its detection would either require long time delays beyond the pulse replica spacing

accessible by spatial light modulator (SLM) pulse shaping, and/or long measurement times
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to achieve an appreciable signal, and thus prone to drift. The sensitivity of our technique

to actually probe coherently excited vibrational modes can be improved in an implemen-

tation of ultrafast coherent anti-Stokes Raman spectroscopy [15] for non-resonant FWM

background suppression.

Supplementary Note 15: Theoretical model of Doppler broadening

A theory of the third order nonlinear response of graphene including spatial dispersion

(or space-nonlocal effects) is still lacking, and in fact our results provide a motivation for

its future development. Nevertheless, and as outlined in the main manuscript, the effect of

a small tip size (or large wavenumbers of surface-plasmon pump fields) on the third order

nonlinear response of graphene can be predicted qualitatively with high degree of confidence,

because it follows from the general hierarchy of the density matrix equations solved by the

method of successive perturbations [16]. Indeed, the linear perturbation of the density

matrix by a Fourier harmonic of the field with frequency ωj and in-plane wave vector qj is

[17]

ρ(1)mn =
Vmn(qj)(ρ

(0)
nn − ρ(0)mm)

ωj − Em−En

~ + iΓ
, (1)

where Vmn(qj) are matrix elements of the interaction Hamiltonian and superscripts (0)

denote unperturbed elements of the density matrix. Energies of the electron states Em(km)

and En(kn) depend on quasimomenta that have to satisfy the momentum conservation

km − kn = qj. If the characteristic spatial scales of all fields are larger than the de Broglie

wavelengths of carriers, the energy difference in Eq. (1) can be expanded in powers of qj to

give

ρ(1)mn =
Vmn(qj)

(
ρ
(0)
nn(kn)− ρ(0)mm(kn)− ∂ρ

(0)
mm

∂k
qj

)
ωj − ωmn + iΓ − 1

~
∂Em

∂k
qj

, (2)

where ωmn = Em(kn)−En(kn)
~ is the transition frequency neglecting the change in electron

momentum and the quantity 1
~
∂Em

∂k
qj describes the Doppler shift of the optical frequency.

In higher orders of perturbation ρ
(α)
mn the frequencies ωj and wave vectors qj will be

replaced by the “combination” frequencies ω(2) = ω1 ± ω2, ω
(3) = ω1 ± ω2 ± ω3 and wave

vectors q(2) = q1±q2, q(3) = q1±q2±q3, etc. The density matrix elements will then acquire

resonant denominators which depend on the corresponding Doppler shifts:

ρ(α)mn =
F (ρ

(α−1)
pq , . . . , ρ

(1)
pq )

ω(α) − ωmn + iΓ − 1
~
∂Em

∂k
q(α)

, (3)

where the numerator depends on the density matrix elements found in previous orders of

perturbation. The measured average value of a given Fourier harmonics of the third-order

nonlinear current density, say j(3)(2ω1 − ω2, 2q1 − q2), can be found by taking the trace of
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the density matrix ρ
(3)
mn(2ω1 − ω2) with the corresponding Fourier harmonic of the current

density operator matrix jnm(2q1 − q2), where

jnm(q) = 2〈n|e−iq·rĵ|m〉

and ĵ = −evF σ̂; see [17]. This step involves integration over electron quasimomenta.

After that, the inverse Fourier transform can be taken to calculate the third-order non-

linear current for a given frequency-wavevector distribution of the surface plasmon fields

E1,2(ω, q), which include large wavenumbers up to qmax ∼ 2π/R, where R is the tip radius.

This procedure is conceptually straightforward but extensive, as evidenced by the amount

of effort already needed to derive the second-order nonlinear current including the effects of

spatial dispersion [17] and the third-order nonlinear current neglecting the effects of spatial

dispersion [18]. However, the qualitative impact of the spatial dispersion of the nonlinear

susceptibility on the observed nonlinear signal is possible to predict just from the general

structure of the perturbative density matrix elements in Eq. (3). Indeed, when the spatial

dispersion effects are included, the frequencies in resonant denominators in Eq. (3) acquire

extra Doppler broadening factors ∼ vF q
(α), where we replaced 1

~
∂Em

∂k
with the characteristic

velocity vF of electrons in graphene. This factor is most important in terms which originate

from second-order corrections and contain the smallest frequencies,

ρ(2)mn ∝
1

∆ω + iΓ − vF q(2)
, (4)

where ∆ω is either frequency difference ω1− ω2 of two quasi-monochromatic pump fields or

the frequency width of a broadband pump pulse. Even for a very broad wavevector spectrum

of the near field at the tip apex, reaching maximum values of qmax ∼ 2π/R > ∆ω/vF , the

contributions of the field spatial harmonics with q > ∆ω/vF to the nonlinear signal intensity

will be suppressed as 1/q2. Therefore, the wavevector spectrum of the nonlinear signal will be

determined by the harmonics with a maximum value of q ∼ ∆ω/vF . As a consequence, the

tip-enhanced FWM signal shifts from and then decays to zero at the actual graphene edge

since the nonlinear susceptibility decreases at larger near-field wave vectors. This will limit

the spatial localization to scales of order ∆L ∼ 2πvF/∆ω. For the observed FWM signal

bandwidth of ~∆ω ∼ 40 meV and vF = 106 m/s we obtain ∆L ∼ 100 nm, in qualitative

agreement with experiment. Note that the pump pulses have a broader spectrum than the

FWM spectrum showed. This is necessarily narrowed by the required spectral filtering to a

FWM of ∼ 40 meV for imaging, which determines the length scale of FWM delocalization.

One can see that the resulting loss in spatial resolution in FWM imaging of graphene is

largely due to a high velocity vF of all electrons. In other materials such as Drude metals

or wide-gap semiconductors with largely parabolic electron dispersion, a significant or even

dominant contribution to the nonlinear susceptibility may come from electrons with low

group velocities, in which case the nonlocal Doppler broadening less prominent.
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We emphasize that these are merely order-of-magnitude arguments that only qualita-

tively explain the mechanism of Doppler broadening on the near-field FWM response of

graphene, which motivates a future quantitative derivation of the nonlocal third-order non-

linear response of graphene and other materials.

∗ Corresponding email: belyanin@physics.tamu.edu

† Corresponding email: markus.raschke@colorado.edu

[1] Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. New

J. Phys. 16, 53014 (2014).

[2] Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions

in graphene. Nat. Photon. 12, 430–436 (2018).

[3] Kravtsov, V. et al. Enhanced third-order optical nonlinearity driven by surface-plasmon field

gradients. Phys. Rev. Lett. 120, 203903 (2018).

[4] Babadjanyan, A. J., Margaryan, N. L. & Nerkararyan, K. V. Superfocusing of surface polari-

tons in the conical structure. Journal of Applied Physics 87, 3785–3788 (2000).

[5] Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev.

Lett. 93, 137404 (2004).

[6] Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave

mixing for femtosecond near-field imaging. Nat. Nanotech. 11, 459–464 (2016).

[7] Groß, P. et al. Plasmonic nanofocusing–grey holes for light. Advances in Physics: X 1,

297–330 (2016).

[8] Yao, X., Tokman, M. & Belyanin, A. Efficient nonlinear generation of thz plasmons in graphene

and topological insulators. Phys. Rev. Lett. 112, 055501 (2014).

[9] Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation of surface

plasmons in graphene. Nat. Phys. 12, 124127 (2016).

[10] Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6,

630–634 (2011).

[11] Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature

487, 82–85 (2012).

[12] Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat.

15

mailto:Corresponding email: belyanin@physics.tamu.edu
mailto:Corresponding email: markus.raschke@colorado.edu


Nanotech. 7, 330–334 (2012).

[13] Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81

(2012).

[14] Ishioka, K. et al. Ultrafast electron-phonon decoupling in graphite. Phys. Rev. B 77, 121402

(2008).

[15] Oron, D., Dudovich, N. & Silberberg, Y. Femtosecond phase-and-polarization control for

background-free coherent anti-stokes raman spectroscopy. Phys. Rev. Lett. 90, 213902 (2003).

[16] Il’inskii, Y. & Keldysh, L. Electromagnetic Response of Material Media (Springer US, 1994).

[17] Wang, Y., Tokman, M. & Belyanin, A. Second-order nonlinear optical response of graphene.

Phys. Rev. B 94, 195442 (2016).

[18] Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of

graphene. Phys. Rev. B 93, 085403 (2016).

16


	Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene

	SpringerNature_NatNano_515_ESM.pdf
	 Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene 
	References



