Supporting Information Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction Hannes Böckmann¹, Sylwester Gawinkowski ², Jacek Waluk^{2, 3}, Markus B. Raschke⁴, Martin Wolf¹, and Takashi Kumagai^{1, 5} * ¹Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany. ²Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland. ³Faculty of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland. ⁴Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, CO 80309, USA. ⁵JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. * kuma@fhi-berlin.mpg.de # 1. Radial Distribution of $trans \rightarrow cis$ conversion probability with PtIr, W, and Au tips We measured the effective radius of the tip-enhanced area for the W and PtIr (80:20) and Au (#2) tips in the same way as **Fig. 1c** in the main text for the Au tip #1. The effective radius was determined to be $4.6(\pm 0.3)$, $9.7(\pm 1.8)$ and $7.0(\pm 0.3)$ nm for the W, PtIr and Au #2 tips, respectively, by fitting the experimental data to a Gaussian function, $A\exp\left(-\frac{r^2}{2\sigma^2}\right)$, where we define the effective radius $r_{\text{eff}} = \sigma$. Figure S1. Radial dependence of the *trans* \rightarrow *cis* tautomerization probability as a function of radius from the tip position for the PtIr, W and Au #2 tip. The tip was positioned in the center of an STM image ($V_t = 50 \text{ mV}$ and $I_t = 30 \text{ pA}$, size: $50 \times 50 \text{ nm}^2$) and illuminated at 690 nm ($n_{\text{ph}} = 2.5(\pm 0.2) \times 10^{18} \text{ cm}^{-2}$) for the W tip, at 860 nm ($n_{\text{ph}} = 4.9(\pm 0.3) \times 10^{17} \text{ cm}^{-2}$) for the PtIr tip and at 860 nm ($n_{\text{ph}} = 3.5(\pm 0.2) \times 10^{17} \text{ cm}^{-2}$) for the Au tip #2. ## 2. Wavelength dependence of the near-field induced tautomerization for the PtIr tip We measured the near-field induced tautomerization for the PtIr tip. **Figure S2** shows the wavelength dependence of the cross section obtained from different tips. The PtIr tip shows a relatively large enhancement in the red and near-infrared range. This is somewhat surprising since PtIr at best supports a weak localized surface plasmon resonance in the near-IR to visible. Although the enhancement mechanism is not fully understood, the result is in line with the observation of relatively strong STM-induced luminescence from a PtIr tip.¹ Figure S2. Wavelength dependent cross sections of the $trans \rightarrow cis$ tautomerization measured with different tips. #### 3. Derivation of corrected near-field cross section The wavelength-dependent near-field cross section (**Fig. 2b** in the main text) was obtained by exposing a statistically relevant number of molecules (\sim 600) to the tip-enhanced near-field. At the given coverage on the surface, this number corresponds to an area of \sim 60×60 nm². However, the effective radius r of the tip-enhanced spot was estimated from the radial distribution of the tautomerization probability (**Fig. 1c** in the main text). The discrepancy between the tip-enhanced spot size πr^2 and the scan area A_{scan} therefore underestimates the measured near-field cross section σ_{NF} and needs to be corrected to obtain the actual tip-enhanced cross section $\sigma_{\text{NF,corr}}$ when the near-field process is dominant ($\sigma_{\text{NF}} \gg \sigma_{\text{FF}}$). We estimated the corrected near-field cross section as: $$\sigma_{\rm NF,corr} \approx \left(\frac{A_{\rm scan} + 2\sqrt{\pi A_{\rm scan}}r + \pi r^2}{\pi r^2}\right)^{1 - \frac{\sigma_{\rm FF}}{\sigma_{\rm NF}}} \cdot \sigma_{\rm NF}.$$ The bracketed part corresponds to the ratio of the tip-enhanced scan area on the surface and the spot size. The spill-over of the tip-enhanced spot across the STM scan frame was taken into account (see **Fig. S3**). Simultaneous contributions from far-field and near-field excitation during the measurement are accounted for by the exponent. The exponent is significant only when $\sigma_{NF} \approx \sigma_{FF}$, *i.e.*, the tip-enhancement effect is weak. Figure S3. Experimental procedure to determine tip-enhanced cross section. The red circle represents the estimated tip-enhanced spot on the surface with area πr^2 , while r is determined from Fig. 1c. During illumination, the spot is scanned across the scan frame area $A_{\rm scan} = 60 \times 60 \text{ nm}^2$. The scan duration was identical to the illumination time. The gray area depicts the spill-over of the tip-enhanced spot across the scan frame, corresponding to $2\sqrt{\pi A_{\rm scan}}r + \pi r^2$. ### REFERENCES ¹ Fojtík, P.; Perronet, K.; Pelant, I.; Chval, J.; Charra, F. Surf. Sci. **2003**, 531(2), 113.