Physics 1140 Laboratory Report Score Sheet

The purpose of this document is to inform students of what is expected in a good Experimental Physics Laboratory Report. These reports will be the largest factor in the grade so it is important to understand what is required. Below you will find the major parts in a well-written laboratory report, the point value associated with each part, and a short description of what is expected in each part.

Points	Possible	Item	Description/Explanation
			The report has the required name, date, section, title,
	1 point		headers/footers, (lab partner if applicable) and has an effective
		Format	layout and information flow that is easy to read and understand.
	2 points		Introduction, purpose, procedure, are all written clearly and simply
			without any extraneous descriptions (ie. This lab was really fun, I
			measured the length of the pendulum, My partner began by
			timing, etc). Be complete and to the point. The reader should
			have a good understanding of what the report is about and how the
		Context	experiment was carried out after the first few lines of the text.
			Variables/parameters defined, units provided, major equations
	2 points		given and explained. Numbers inserted into the equations and the
		Formulae	results accompanied by appropriate units and Sig Figs.
			Graphs, diagrams, tables, etc used to describe a result or related
	2 points		part of the experiment. Labels such as title, axes, units, headings
	•	Figures	are all used appropriately.
	1 point	Data	Data is presented as an array/table and is given a short description.
	· ·		Definitions given, source and origin/formula explained for any
	2 points		measured or propagated uncertainties. Sig Figs are used correctly
		Uncertainties	for any stated uncertainties.
	1 point		Explanatory text, appropriate comments, interpretation of any
			graphs, tables, figures, etc given and backed up with data in the
		Annotation	report.
			Procedural and numerical correctness and completeness. Proper Sig
	3 points		Figs with stated uncertainties and appropriate units. Clear labeling
		Results	so there is no question as to the result of the experiment.
			Arithmetic/quantitative correctness (Is your measured value close
			to the accepted/known value, within errors?). Appropriate use of
	3 points		and interpretation of data, proper equations/formulae used to
			calculate final quantities from measured data. Discrepancy from
		Analysis	the known/accepted value given and explained (if applicable)
			Discussion of the results is appropriate. Quantitative comparisons
			(discrepancy) and objective conclusions given. Interpretation of
			results is backed with data from the experiment and avoidance of
			undue speculation. Analysis of error in the experiment is
	3 points		appropriate (avoid: The large uncertainty is due to Human Error,
			The equipment is very old and does not give good data, etc) Avoid
			statements like: "This was a really fun lab", "I would recommend
			this lab to any one else", "This lab was really hard and should not be
		Conclusions	even available to students", etc
	20 points	Total Score	